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Multisensor Distributed Track Fusion Algorithm
Based on Strong Tracking Filter and Feedback Integration”

YANG Guo-Sheng'® WEN Cheng-Lin° TAN Min'

U Institute o f Automation, Chinese Academy of Sciences, Beijing 100080)

¢ (Institute o f Computer and Information Engineering , Henan University, Kaifeng 475001)
(E-mail. Y3glh@sohu. com)

Abstract A new multisensor distributed track fusion algorithm i1s put forward based on combining
the feedback integration with the strong tracking Kalman f{ilter. Firstly, an effective tracking gate
is constructed by taking the intersection of the tracking gates formed before and after feedback.
Secondly, on the basis of the constructed effective tracking gate, probabilistic data association and
strong tracking Kalman filter are combined to form the new multisensor distributed track fusion
algorithm. At last, simulation is performed on the original algorithm and the algorithm presented.
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1 Introduction
Multisensor track fusion based on feedback 1s one of the key methods for distributed

data fusion. The main ideas can be illustrated as follows "

. Firstly, each sensor uses one-
step state prediction and covariance matrix from a fusion center to create tracking gate,
and constructs its local target track based on the tracking gate and Kalman f{ilter, which is
then sent to the fusion center. Secondly, the local target tracks from different sensors are
assoclated and fused in the center to form for every target the final target track in the sense
of over-all minimum mean square, one-step state prediction and covariance matrix which
are fed back to every sensor for next estimation. The research has achieved a lot of break-
throughs in fusion tracking theory and its application!!™*!,

Kalman filter or EKF (extended Kalman filter) i1s the basic characteristic for the fu-
sion algorithm mentioned above. The standard Kalman filter requires that the equations of
the system state and the measurement be linear, and that the notses oi the system and the
measurement be uncorrelated white noise sequences with zero means. But the system mod-
el 1s usually nonlinear due to the complexity of the problem appearing 1n the real applica-
tion. Although EKF is one of the effective methods in dealing with the nonlinear filtering,
1ts robust 1s not good for model uncertainty, which will result in inaccurate system state
estimation, even state estimation divergence®’,

drawbacks, | 6 ~9 ] present a STF (strong tracking filter) method that can effectively

In order to overcome the above EKF's

solve the problem of the state inaccurate estimation resulted from the system model uncer-
tainty.

Kalman {filter has a strong influence on the multisensor track fusion algorithm based
on feedback. In addition, each sensor only makes use of one-step state prediction and co-
variance matrix to create new tracking gate, without considering the influence of the track-
ing gates tormed before the feedback. In order to solve the problem, an effective tracking
gate 1s constructed by taking the intersection of the tracking gates formed before and after
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teedback. And then the probabilistic data association (PDA) is combined with STF to

form the new multi-sensor distributed track fusion algorithm based on the constructed ef-
fective tracking gate.

2 System description

The dynamic state model of an object is described as the following'®

x(k+1) = fle,x(k)) +TE)wik) (1)

where £>0 1s the discrete time variable, x& R"“! is the state variable of interest, I'(k) &
R"“%1s the known matrix, the system noise w(k) € R**' i{s a stochastic process, and the
nonlinear function f:R"—R" has first-order continuous partial differential coefficients over
the states.

With the following measurement equation, the state variables of the same object are
observed by N different sensors respectively.

2, (k) = h,(k,x(k)) +vi(k), 1=1,2,,N (2)
where z, (k) € R* ' (d,<<n) is the measurement variable, the measurement noise v, (k) &
R4 ! 1s a stochastic process, and the nonlinear function k; ; R —R“ has first-order contin-
uous partial differential coefficients over the states.

The noises of the system and the measurement are the uncorrelated stochastic white
noise sequence with

E{w(k)} =10 (3)
E{w(k)w' (D} = Q(k)Sy, k>0 (4)
E{v.(k)} =0 (5)
E{v, (VI (D)) = R (k8,84 s ivj = 1,240+ sN, kyl = 0 (6)
Elv.(h)w' (D} =0, i=1,2,- ,N,k,lf (7)

where Q(4) 1s a symmetrical nonnegative matrix, and R, (k) 1s a symmetric positive matrix.
It 1s assumed that the initial value x(0) of the state vectors x(k), w(k), v,(k) are in-
dependent of each other, and x(0) 1s a Gaussian randorn vector with statistics
E{x(0)} = x, (8)
E{[x(0) —x, | x(0) —x, '} = P, (9)

3 Track fusion algorithm based on the feedback integration and STF
3.1 Fusion algorithm

The time-variant fading factor® introduced in EKF adjusts the covariance matrix of
the state prediction errors and the corresponding gain matrix in-line to make the residual
error sequence Keep orthogonality when the variance of the state estimation errors reaches
the minimum. This is the basic idea of STF that can ensure the robusticity of the tilter for
the system model uncertainty and the strong tracking ability all the time for the slowly
changing and abruptly changing states.

As for the system described in (1) and (2), assume that we have obtained the esti-
mate x(k| k) for state x(%) based on global information and the corresponding estimation
error covariance matrix P (k| k) at time k. When we get the actual measurements for
x(k+1) from every senscor, we can obtain the fusion estimate at time £+ 1 based on global
information

Bk 1R+ D = 2+ 110+
Ph+1| k+1){ZP 41 k4 D[2 k411 h+1) —2 (k1| k)]~
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N

SYPUG 1| W[&G+1 | B —2k+1]| D] (10)
i—1
and its fusion estimation error covariance 1S

N
PUk+1]k+1)=P'(k+1 k) + D[P +1|k+1)—P'(k+1}k)]

(11)
In (10) x(k+1|k)is one-step prediction estimation based on global information
x(k+1 |k = flh,x(k| k)) (12)
x;(k+1|k)is one-step prediction estimation based on ith sensor
x(b+1| k) = flhyx, (k| k)) (13)

P,(k+1]k) is one-step prediction error covariance for the ith sensor on the basis of STF
(A; (k) is a suboptimal fading factor whose setting method will be discussed in the follow-
Ing section)
P(kR+1|k)=ARF, ()P, (k| RF; (k) +T'(k)Q(k)I(k) (14)
In (11), P(k+1|k) is one-step prediction error covariance on the basis of global informa-
tion
Pk+11 k) = FRPR | BF () 4+T(RQRI(R) (15)

Let ¥;(k+1|k+1) and P,(k+1|k-+1) be the local state estimation and error covari-
ance based on ith sensor respectively. According to | 10~12 |, the target state estimation

for ith sensor can be obtained by means of PDAalgorithm""

mi(k—kl}
fE+1 h+D = D) B+l | k+1D =& G+1 | D+ K G+ Dy (k+1] &)
;=0
(16)
P.(k+1lk+1)=F(k+DP (k+1 |13+ [ I—K,(k+1)H;(k+1) P, (k+1|k)+
m.(k+1)
K, (k+1)/{ E BI(R)yl (k+D(y) ' —y. (k+D(y, (R+1)T (K (1)) (17)

In (16) and (17) K;(k+1) is the gain matrix, y:.(k+1|%) is the probabilistic sum of
one-step measurement prediction errors for the zth sensor

Kitk+1)=PGk+1{H G +1)HD'[HG+DP(,+DHG+I)D"+RE+ D]

(18)

m_(&+1)
y(k+1) = > Biyl(k+1) (19)
Vitk+1) =zitk+1) —2,(k+1| &) (20)
t(k4+1 k) =hk+1,%G+1]k) (21)

From (16) to (21), m,;(k+1) is the number of returns at time 241 in the ith track-
ing gate, z! (k+ 1) is the jth return fallen into the ith tracking gate at time &2+ 1,

z, (k+1| %) is the one-step prediction measurement estimation based on the ith sensor, 3! (£+
1) denotes the probability of the z/ (£+1) from the target, and 8} ((+1) denotes the prob-

ability of the event that there is no measurement coming from the target in the ith tracking
gate.

One-step measurement prediction error covariance based on ith sensor 1s

Sitk+1) = HG;k+DP(t+1|ED(H(k+1)T+ R, (k+1) (22)
and one-step measurement prediction error covariance on the basis of global information is

SI(k+1) = Hi(k+DP+1|BHDT(4+1) +R(E4+ D (23)
where in (17)~(27)

dx x(k+1) =& (k+1] k)

H (k+1) = (24)
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oh. y
H (B4 1) = hl(k—i-lax(k—!—l))_ (25)
X x(k+1) =k(k+11k)
F,(k) — af(ka’x(“) (26)
X | xCR) = (k&)
F(k) — af(ka’x(k)) l (27)
X (k)= x(k' B)

3.2 Setting the fading factor

In order to decrease the computational load and ensure the on-line performance of the
algorithm, the approximation method presented in [ 7 | is adopted to set the suboptimal fa-
ding factor A, (&), shown as the following.

A(E+1) = A A"’f’\””}’ [ = 1,2,3+N (28)
| 1, A <1

r[N,(B+ 1)

NS TM k) (e9)

N(k+1)=V(b+1)—HG;k+1,%5G,k+1] )OI EQE+ 1T (k)

HIN (B +1,x(k+1] k) —aR,(E+1) (30)
M(k+1) =H(b+1,x,Ck+ 11 EDF,(kyx, (k| R))P(E|E) »

Fil(k,x, (B | B)YH (F+1,x;CE+11k)) (31)

(y, (D yl (1), B =0
Vb4 1) :<pvy<k)+yf(1i+1)y?‘(ze+1), . (32)

p

where 0<Cp<(1 is a forgetting {actor chosen to be p=0. 95 in common use, a==1 is a given
weakened factor.
3.3 Setting the effective tracking gate

Target tracks formed at time % in local are sent to the fusion center where these tracks

are fused to form the fusea track of the target, the target state prediction x(k+1}%) and the
covariance matrix P(k+1|k) which are fed back to every local sensor i(:=1,2,-+*,N).

lLet Y¢{(k+1) denote the effective return set of the ith sensor at time £+ 1 before feed-
back. Y“(k+1) satisfiest® '

Ye(b+1) =iz (k+ 1D [2(b+1) —2(k-L11R) T[S, (B +1)]"
k1) — 2 (k1)) < ¥} (33)

where 7 1s the threshold of the tracking gate.

l.et Y?(k+1) denote the effective return set of the ith sensor at time #+ 1 after feed-
back., Y?(k+1) satisfies

Yo(bk+1) ={z2(k+D|[2(k+1)—20(k+1R)T[S(k+1)]"

[k + 1) —2/k+ 1) ] <<V} (34)
where 2/ (k+1|k)=h,(k+1,x(k+11k)) 1s the one-step measurement prediction for the
/th sensor based on the global information. Thus, the final effective return set symbolized
as Y. (k+1) for the ith sensor at time #+1 is

Y+ =Y+ NY (41D (35)

According to the fusion algorithm presented in Section 3. 1, the next local and global

state estimations are repeated by taking Y,(k+1) as the final effective return set, P,(k+1
(B)=P(k+1|k) , and x,(k+1|k)=x(k+1|k).

4 Simulation research
Given that 2 radars located on the same motion platform synchronously observe a cer-
tain region of 65km X 80km X 70km with a 0. 5 seconds sampling period. Radarl observa-
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tions satisfy a Gaussian distribution with null average and 6 mrd standard deviation both
for azimuth and elevation and 90m standard deviation for range, while RadarZ observations
satisfy a Gaussian distribution with null average and 5 mrd standard deviation both for azi-
muth and elevation and 80m standard deviation for range. Their measurement equations are

] tg ' (x, (k) /x1 (k) }
2, (k) = |tg  (x:(B)/ V2 (R) +25(B)) |+ vi(k), i=1,2 (36)
SR xR (R iR

The threshold of the tracking gate is Y= /9. 2, and the uniform clutter density is cho-
sen as 0. 2/Km®. In the observation region, there is an aggressive target with the initial posi-
tion x(0) =[x,(0),x,(0),2;(0) 1" =[15km,15km, 15km]" moving in the 3-D area with
the same fixed altitude x; () =15km, and lasting for 100 seconds. lts state equations are

x(k+1) = 2,(k) —0.01 Xa X xi(k)+ w (k)
z:(k+1) = b X x, (k) + w, (k) (37)
3k +1) = x: (k) + w, (k)
where a=0. 35, 6=0. 98; w, (&), w, (k) and w,; (k) are Gaussian distributions with null
average and 40m standard deviation.

Select a=1. 1, and denote G(¢) as the real trajectory of the target, (G, (¢t) and G, (t) as

the multisensor distributed fused trajectories of the target based on the EKF and feedback,

as well as based on STF and feedback integration respectively. The simulation results are
shown in Fig. 1, Fig. 2, and Table 1.

|

|

50— 50—
45} 457
40} / 40}
3ot G.(t) . 30F
~ 30F ; ~ 301
é 25} :/*"/ - é 25}
R o0l _ = 90l
15} G\(1) P - 15}
10t (1) 3 10}
5t -"""-' - 5t
520 25 30 35 40 45 50 1520 25 30 35 40 45 50
x;(Km) x,(Km)
Fig. 1 Simulation result when the model parameters  Fig, 2 Simulation result when the model parameters
are matched with the system parameters are not matched with the system parameters

Table 1 Prediction positions and returns fallen into different tracking gates

Position prediction

based on local (8. 9036,29.4769,49.5124)

feedback Radarl Radar?
Betfore Returns fgllen Into (8.012,31, 3302,49. 3124) (8. 1045,30,.6702,49. 4519)
the tracking gate (9.0739,29.6091,49, 7416) (9.1031,29.9103,49. 8377)

(10.1713,28. 4281,50, 5124) (10. 0965,28.98123,50.0152)

__““__“———__———_—_“—__“

Position prediction
based on global (9.1534,30.2734,50.4512)

feedback Radarl Radar?2
After  Returns fallen into (8. 2763,28. 0100,50. 0124) (8. 6724,28. 7810,50. 4812)
the tracking gate (9. 0739,29. 6091,49. 7416) (9.1031,29. 9103,49. 8977)
(11.1135,31. 2468,52. 1134) (11. 1135,31. 2468,52. 1134)
Feedback Returns fallen into (9.0739,29,. 60581,49,7416) (9,0739,29. 6081,49,7416)

integration  the tracking gate (9.1031,29, 9103,45. 8977) (56.1031,25, 9103,49, 8977)
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When the model parameters are matched with the system parameters, it can be seen
trom Fig. 1that the multisensor distributed track fusion algorithm based on STF and the
feedback integration has very approximately the same tracking effect as the one based on
EKF and feedback. In addition, Tab. 1 shows the target returns fallen into different track-
Ing gates at time £=25(1t 1s known through simulation that the number of the target re-
turns reaches the maximurn at this time). It can be seen from Tab. 1 that the target re-

turns fallen into the tracking gate after feedback integration is obviously decreased. This
will reduce the computational load of the local PDA algorithm effectively. As a result, the
on-line tracking performance of the whole system has been improved.

Fig. 2 shows the simulation result when the model parameters are not matched with
the system parameters, a 1s increased from 0, 35 to 0. 6&, while & 1s decreased from 0. 98 to
0. 88. It can be seen from Fig, 2 that large state estimation errors appear when the multi-
sensor distributed track fusion algorithm based on EKF and feedback i1s applied. But the
multisensor distributed track fusion algorithm based on STF and the feedback integration
has the strong state estimation abtlity. This demonstrates that the fusion algorithm based on
STF and the feedback integration has strong robustness for the system model uncertainty.

5 Conclusion

Considering the limitation of Kalman fiiter in the real application, STF is introduced
into the multisensor distributed fusion field on the basis of | 8,9 ]. With the help of the fi-
nal effective tracking gate constructed by taking the intersection of the tracking gates
formed before and after feedback, a new multi-sensor distributed track fusion algorithm
combining the feedback integration with the strong tracking Kalman filter is put forward in
this paper. Stmulations are performed on the tusion algorithm based on EKF and feedback
as well as the one based on STF and the feedback integration. The simulation result shows
that the fusion algorithm based on STF and the feedback integration: 1) can reduce the
computational load of the local PDA algorithm effectively to improve the on-line tracking
performance of the whole system; 2) has strong robustness tor the system model uncer-
tainty.
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