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Abstract Based on the theory ot Markov performance potentials and neuro-dynamic programming
(NDP) methodology, we study simulation optimization algorithm for a class of continuous time
Markov decision processes (CTMDPs) under randomized stationary policies. The proposed algo-
rithm will estimate the gradient of average cost performance measure with respect to policy param-
eters by transforming a ccntinuous time Markov process into a uniform Markov chain and simula-
ting a single sample path of the chamn. The goal is to look tor a suboptimal randomized stationary
policy. The algorithm derived here can meet the needs of per;ormance optimization of many diffi-
cult systems with large-scale state space. Finally, a numerical example for a controiled Markov
process is provided.
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1 Introduction

Many real systems, such as communication networks and flexible manufacturing sys-
tems can be modeled as Markov decision processes (MDPs). Their performance optimiza-
tion has become an important direction of DEDS research field. Traditional computation
based methods involve much computation of matrix inverse thereby consuming much time
and rely on the precise model in the form of transition probability matrices or infinitesimal
generators. FFor large-scale systems with curse of dimensionality and curse ot modeling,
these methods will be inapplicable. The theory of Markov periormance potentials, intro-
duced and developed by Cao X R and Chen H F for the sensitivity analysis of MDPs'!Y, has
been used to solve the simulation optimization problems?. The proposed optimization
methods dispense with matrix inverse, but still need some tables to show the relation be-
tween performance potentials or polices and the states one by one. So much storage space
1s still required. In order to avoid the curse of dimensionality, Bertsekas D P and Tsitsiklis
J N developed the neuro-dynamic programming (NDP) based optimization theory for dis-
crete time MDPs (DTMDPs)’, Thereafter, further work on NDP has been made'**!, and
paved the way for optimization study of CTMDPs. In this paper, we combine performance
potential theory and NDP methodology to study a class of CTMDPs under randomized sta-
tionary policies. The policy parameters will be updated according to the gradient estimates
by transforming the processes to its uniform Markov chain and simulating a single sample
path of the chain. The randomized policies are presented by some approximation architec-
ture with fewer numbers of parameters than the states. Thus the storage space 1s saved
and the curse of dimensionality 1s avoided.

2 Problem description and fundamental theory
Consider an ergodic continuous-time Markov process { X,,t€[0,00)} with finite state
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space ®=1{1,2,+--,M} and finite action space A. Denote Q(a) =[qu (a) ] as the infinitesi-
mal generator of X, controlled by action a, and f(i,a) as the cost paid for per unit time
whenever action a is taken at state . Assume that Q(a) is conservative, As @ and A are
finite, for any i€ ®,a& A, —¢q..(a) is uniformly bounded . Let A be the bound. Suppose
any parameter vector 8= (6, ,0,,+,0x) € @ R" determines one and only one randomized

stationary policy # (@), which assigns a probability distribution function mapping state : &

® to action a& A. Under this policy, action a is taken at state : with probability #,(:,8).
Such policies represented in terms of parameters are called parameterized policies. In NDP

approaches, #(8) can be constructed through the outputs of an artificial neural network or
other approximation architectures, and @ will be the weights of the network. Define Q(8)

ZEQIJ(G)] and f(®)=(f(1,0),-, f(M,8))", which satisfy
q,(0) = > 1. (i,0q (@), fG.0) = > #.,0f(G,a), Yi,jed (1)

atc A aE A
Obviously Q(0) is well defined, meaning the average transition rate matrix of the process

under #(8), We call X(0)={X,,®,A,Q(8), f(08)} a parameterized CTMDP constrained
on ®. Let 7(8)=(n(1,0),-+,7(M,8)) be the stationary distribution of X(8), which sat-

1sfles

7(@e=1; Q(@e=0; n(@QE =0 (2)
Here, e= (1,1, +-,1)7 1s the all-one vector. The average-cost performance measure of

X(0) is

T
70 = lim E| =| £(X,,0)dt) = 7(8) £(6)

T—>c0 T,
For any 0€ @, define the Poisson equation of X(8) as follows'®
(— Q(O) + e (0) ) g(0) = (@)
[ts unique solution vector 1s g(8) = (—Q(0) 4-Aen(8)) ' f(6). We call g(0)+ec an aver-
age-cost performance potential vector for any fixed constant c. The potential of state 7 can
be given by'!

~ T
g(i,0) = lim{E J F(X,,0)dt | X, = i —:rvw)} (3)

T—-—P e

The realization factors of X(8) are defined as d;; (8) =g(j:9) —g(i,0), i,;€ ®. For any
recurrent state ;" and constant c,let g(¢*,0)=c and define T, (@) =inf{z:t>0,X,={",
Xo=7}. Then, by equation (3),we have

T, « (&
2,0 = d- (8 +c=E j £ (X, 00— (8 Jde | X, = 5 |+ (4)

0
Assumption 1.

a) For any :€ ®P,a& A, #,(i,0) is twice differentiable with respect to parameter vec-
tor ¢, and has bounded first and second derivatives.

b) For any i€ ®,a€ A,0€ @, there exists a bounded function vector L, (i,8) such that

VH, G, =¢,0,0OL,(1,0), where V denotes taking gradient with respect to parameter
vector 0,

c) Denote Q as the closure of {Q(8) |8€®), and let the Markov process correspond-
ing to every element of Q be ergodic.

3 A simulation eptimization algorithm based on a single sample path
3.1 The uniform Markov chain
First, we have the following theorem.

Theorem 1. Under Assumption 1, the gradient of average cost 7(8) with respect to 6
1s equal to
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V() = 7(0) (Vf(0) + VQO) g(h)) (9)
This theorem is easy -0 verity by applying Poisson equation and balance equation (2),
so we omit the details. Define
Pla) = T+A7"Qla); P(O) =T+ 171Q0) (6)
Obviously, P(a) and P(8) are all stochastic matrices. From equation (1) ,we have p,, (8) =

Z‘z“a (i,8) p, (a). Define a DTMDP X' (8)={X,,$,A,P(8), f(8)} corresponding to

adE= A

X(0)., X'(0) is called a uniform Markov chain of X(8), and A is the uniformization param-

eter. On a sample path of Markov process X' (8), the realization factors are defined as '
N, (8)-]
{}

4O = E{ 3 [f (X, 0= 1O ]| X, =i

711 == (]

where N, (@) =min{n;n>0,X,=7, X =1}, If g(i” ,0)=c, then the potentials of X' (8)

are given by
N'z’* (&) -1

g (.0 =di-; (0) +c = Z (f(X,.0)—1® ] X, =j}+c, Vj€ED D

=

Theorem 2. For a tixed parameter vector #, CTMDP X(80) and the corresponding DT-
MDP X’'(8) have the same stationary distribution 7(0), and have the same average-cost

performance measure 7(8). If c¢=0 in (4) and (7)., we have

VN(0) = 7(0) (Vf(8) + VP(B)g' (0)) (8)

Proof. Let 7(8) be the stationary distribution of X{(8). Since P(8) is a stochastic ma-

trix, it is easy to verify n{6) P(0) =n(8) and n(@)e=1 by using (2) and (6),namely 7(8)

is also the stationary distribution of X' (8). In addition, the definition of X' (8) implies that

performance function £(0) is the same for both X(8) and X' (8), thereby the average-cost
performance measure of X' (0) is equal to

N--1
hmE ;Zf()&ﬁ,ﬂ)}*— (@) f(0) = 7(0)
N—» oo

By Theorem 2 in [ 7], we obtain d,, =d;, /A. Therefore, when c=0, g(8)=g"(8)/A. Fur-
thermore, (6) yields VQ(O) =A - ‘\_/'P(G). Combining these two formulas with (5), we can
obtain (8), and the theorem is proved. ]
3.2 A simulation-optimization algorithm

Theorem 2 implies that performance optimization problem of CTMDP X (8) can be

solved equivalently through its uniformized Markov chain X’(G). So the results of [ 1] may

be referenced. By Assumption 1, (8) can be rewritten as

V(0 = D E[X (X)) VG0 T+ D) D E[X (X)X, (X ) Xu (@)L, (.0 g .0) ]

1o tgyedPutc A

(9)
where a, is an action selected at state X, with probability ¢ (X,,0), X;(*), and X, (*)

are denoting-functions of ¢ and a. respectively. Given a parameter vector ¢, we obtain a
sample path (X, s X, +1.» X, + X, 1+°") by simulating X' (8) according to the transi-
tion matrix P(8). Here, u, =0,X, =1t v and wy; =min{n:n>u,, X, =1 }. Further-
more, let

;O, lf H — W,

?(X,.&O —=S v
& ) Ea“—”} (f(X,,0)— 1), otherwise

L.i.':n

be an estimate of potential g’ (X, .0) yu,_, <n<<wu,. Here,a>>0 is a forgetting factor. and 7

is an estimate of 7(#) oktained at time n. Then, according to (9), we define the estimate
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of gradient direction as F'* (8,7) = E E#a (X,.0) (f(X,5a)—1)z,(0) , where

n=u, a€CA

L, (X,,0), if X, =i
oz, () + L, (X,,0), otherwise

Then, for a fixed integer T, our iteration algorithm takes the following form
(A+1)T—1

rﬁiaq»l = 0, — 7, Z (f(Xava,)— ﬁk)zn(ﬁk)
"1 (10)

< (A+1)T—1]

ﬁkﬂ = 7. + B4 Z (f(X,,a,) — )

n=kT
Here, {7, } is a stepsize sequence, and B 1is a positive scalar coefficient. Similar to [4], we

introduce the following assumptions to ensure convergence property of the above algo-

2, (0) = <

rithm.
Assumption 2. The stepsize sequence {7.} 1s nonnegative and nonincreasing. Further-

more, there exist a positive integer p and a positive scalar B such that

e o 4t
D =00, DV <oos DV, — V)< Bt?Y:, ¥n,t>0
= k=10 k=n
Assumption 3. There exists an integer N, such that, tor every state 7 and every N,

matrices Q,(#),/=1,2,+*,N, in Q, the corresponding matrices P,(8),l=1,2,++,N, de-

Nﬂ
fined by (6) satisty E[H};IP}T]M =0,
n=1]

We then have the_following theorem. The proof is similar to [ 5 |,s0 we omit the details.
Theorem 3. For any fixed positive integer T,let Assumptions 1, 2 and 3 hold, denote
{0,} as the parameter vector sequence generated by the above described algorithm. Then,

n(0,) converges with probability one, and V 7(6,) converges to zero with probability one.

4 A numerical example
Consider a CTMDP with three-state space @={1,2,3} and two-action space A=1{1,

2}. Under action a, the state transition is illustrated in Fig. 1, the infinitesimal generators
and the cost rates are given respectively by Q(a=1)={—2,1.6,0.4;1.6,—2,0. 4;0,1. 6,
—1.6], Qa=2)={—-2,0.4,1.6;0.4,—2,1.6;0,0.4,—0.4], and fla=1)=f(a=2) =
(0;03;1). The optimal policy 1s to choose action 1 at any state, and the associated stationa-
ry distribution 1s #=1(16/45,4/9,1/5). Thus the optimal average cost is 7=m « f(1)=
0.2. Let A=2. Denote the coding of a state as x;,iE @, taking the value (0;1), (1;0) and
(1;1) respectively. Define the character vector function of a state to be the form

Fig.1 State transition diagram
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P(x)=[P (x;),% () ]=

Let r (2;)=%(x,) * 037 (x,)=%(x;) » b, where &, and &, are parameter vectors. Then

the probabilities ot taking actions 1 and 2 at state i are of the following forms respectively
exp(r; (x,)) _
exp(r, (x,))t+exp(r; (x,)) ?
exp(r: (x,))
exp(r (x,) )+ exp(r; (x,))
Select the initial parameter vector to be zero, 1. e., choose actions 1 and 2 with equal
probability at the beginning. [.et T=3,a=0. 99,8=0. 2. The simulation results corre-
sponding to 2000 state transitions are given in Fig. 2. The upper plot denotes the value of

‘uu:I (3):

Fooz (1) = = 1 —#,_, (1)

7, and the three plots underside represent respectively the probabilities of taking action 1
at states 1, 2, and 3. We see that, after initial updating steps, the resulting policies all
take action 1 with large probability at any state, approaching the optimal values.
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Fig.2 Curve of simulation results

S5 Conclusions
By applying Markov performance potentials and NDP methodology, the optimization

of CTMDPs with curse of dimensionality is studied. Although we focus on the processes
with finite state space and finite action space, the results can be extended to other cases
such as general state space and action space.
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