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Abstract Based on vector plots analysis, this paper researches the geometric frame of iterative
learning control method. New structure of iterative learning algorithms is obtained by analyzing
the vector plots of some general algorithms. The structure of the new algorithm 1s different from
those of the present algorithms. It is of faster convergence speed and higher accuracy. Simulations
presented here illustrate the effectiveness and advantage of the new algorithm.
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1 Introduction

Iterative learning control was proposed by Arimoto (1984)", Up to now, it has been
developed and become an active branch in the intelligent control field with applications cov-
ering more and more aspects, such as discrete systems[z‘ 3, general systemsm » Systems
with distributed parameters'®, and 2-D systems®!. The structures of the algorithms are
focused on P-type'™ ®, D-type” !, PD-type and PID-type!'’-. Also, there are the im-
proved forms of the algorithms. Though each of the algorithms has the feature of its own,
the algorithms are evolved from the algorithm

w, ., = u,(t)+4+Le,(t)y t& [0, T] (1)
proposed by Arimoto (1984). So we can consider them as one type of algorithms. Up to
now, iterative learning control has been developed for over one decade. The remaining
problems are whether there exist better algorithms of other types, and whether a comple-
ted theoretical frame can be established to instruct the development of iterative learning
control, and to direct one to seek more etfective fast algorithms.

Herein, by the above motivation, we make effort to establish a geometric theory of 1t-
erative learning control in this paper. Upon this theoretical frame, we clarity how to de-
sign a more effective iterative learning algorithm to ccnverge fast. Thus, a new approach
is proposed to the advanced development ot 1terative lecarning control.

2 Vector plots analysis and the structure of new algorithms
Consider a nonlinear control system as toilows

x(t) — f(xauat)
J'y(t) = C(x, )+ BWu(t) ’ t€ L0, T) (2)
and initial condition
x{(0)= x, (3)

where x€E R, u€ R",y& R', f and C are vector functions with appropriate dimensional and
Lipschitzian continuous. 1. e.,

”f(x1 Uy st)— f(x2,Uz 1) “g L_f(Nx-L — X2 ”+ “ul — U, n ) (4)
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|C(x,,t)—Clxpst) | << Loy — x2 | (5)
where L,,L; are not specificly known. The ideal output of the system 1s y,(2).

It is difficult to seek an ideal input u,; (¢) such that the output of the system is just
y.(2), because of the uncertainty of the systems. Therefore, people intend to seek u, ()
using the following iteration process

uk+1(Z) = u, (t) + L()e (), t €& [O#T] (6)
where ¢, () =y,(t)—y,(t), y,(¢) is the output of system (2) according to the input u, (),
L(¢) is the gain matrix which is remained to be decided. If the sequence {u,(z)} deter-
mined by (6) i1s convergent, the limit u* () must be the 1deal input u, (¢).

From (6), the process of learning 1s to decide the next (the (£+4-1)th step) input
through the present (the kth step) input associated with the output error so that the se-

quence {u; ()} converges as soon as possible. Denoting u, (¢) =u, (¢t) —u,;(t), algorithm
(6) can be rewritten as

i, 1 (1) = w, (1) +Le,(t), t€ [0,T] (7)

To get a4, (t)—0, it is equivalent to have || &,(¢) |—0. In another word, the algorithm de-
fined by (7) requires that should decay to zero. From (7), it 1s easy to get the geometric
relation shown in Fig. 1.

(a)

Fig.1 Graph of vector analysis

If we add the vector u, ., then vector plots are as {ollows.
Thus, Fig. 1(a) corresponds with Fig. 2(a) and Fig. 2(b), Fig. 1(b) corresponds with

Fig. 2(c) to Fig. 2{(1). To get an effective fast algorithm, we seek a scheme to adjust u, ;,
via the analysis of the above figures.

Le
1&‘“‘1 a

(a)

U,

(e)

Fig. 2 Graph of vector analysis
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At tirst, we consider the case of Fig. 2(a) and Fig. 2(b). In Fig. 2(a), we draw a ver-

l,_‘I

tical line of vector &, through point a. The crossing point of the vertical line with @, ., is c,
shown in Fig. 3. Thus, we find that {ec| < |a,., (2)|

and |oc| > |u,(+)]]. Through point a, we draw a seg-
ment ad crossing ob at point d. When /8<C90°, the

length |od| is possible to be less than [la,(z)||. Letting

ad — e, and taking u, ., == od to be the adjustment of
uy .y » we get an algorithm Fig. 3
w, ., = u,+e, t& 0,1 (8)
[t 1s clear that the conditicn |[a,., | <|&. | is satisfied.
The problem 1s how to determine the vector e, so that //8<790°., We will seek their re-
lations by using the information of &, ;. Selecting ad to be vertical to Le,_,, if Sa>0,

Graph of vector analysis

we get /f3<90°. Hence, we select e, to be the vertical of vector Le,_,. Obviously, the vector
(Lle,_,)"Le

; ]) 5 kLEk_l (9)

| Le;— |°

ék = Lek

1s vertical to the vector Le, .

Therefore, when [a, || <]
U.., — U, ‘l‘ék = U, —I—L(ek

l , we obtain a new algorithm structure

Le, )" Le,

—(fiel) ”fiew), r€ [0.T] (10)
F—1

w,_, || =

For the case of Fig. 2(b), analogous to the above., when |
new algorithm structure

Uy, — U, +ék — Uy "—L(Bk

u,

\&;3 H s WE Obtaln d

I Le. | -—e“)., t € [0,7T] (11)

(Le.)'Le,._,
In a word, in the case of Fig. 1(a), we can obtain a preliminary algorithm structure,
namely, when Huk —FLe&H = H u,

"

( le, ) I . :
Lo~ T e ) i <

oy = < "LZ”E , t€ [0,T] (12)
wt Llec— e ) i = i

Next, we consider the case corresponding with Fig. 1(b). First we consider the case

of |a, | >|u.|. that is. Fig. 2(c) and Fig. 2(d). For Fig. 2(c), we can obtain corre-
sponding algorithm structure as same as (10) by analyzing. For Fig. 2(d), the original al-
gorithm (6) remains.

At the end, we consider the case of Fig. 2(e) and Fig. 2(1). For Fig. 2(e), analogous
to the above, we can obtain corresponding algorithm structure as same as (10)., For Fig. 2
(f), the original algorithm (6) remains.

For the case of Fig. 1(b)., we can obtain a preliminary algorithm structure, namely,

when |u, +Le, | <<lu:| -
u,., — u, +L(€;, — 0

(le, )TLek
| Lei o |°
where 6=0,1 so that the transferring of Fig. 2(e) and Fig. 2(1) can be better described.

Extending the scope of 6, we get 0<Co<_1.
For synthesizing the algorithms of all cases, we also introduce a factor ¢ in the struc-

ture (12). That 1s, wher. |u,+Le, | > | u.

ekm])! fe [OaT] (13)

!

/ (Le, )" ) )
Jukﬁ—Likeé—‘a TI;’I) “;ekekl)s “u&--—1 N< nu& H
U, , =— ”I;IHE ’ 4 6 [OqT] (14)
£

kuﬁ -’—L{ﬁ%“f’ e,%l), H&%—l “;’ Hﬁé H

(Le,@ )Tlxe,e\._l
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where c& [ 0,1 .
In the second equation on the right hand in (14), let
5 — (Le,_; )TLek.(Lek—l )TLege_
| Leo|® | Lees |?
Because (Le, )" Le, (Les-, )" Le, << | Le,|? | Le, -1 [*+ we have < h. So, when h €
(0,17, we get 6&€ [0,1]. Substituting (15) to the second equation on the right hand in
(14), we get

(15)

( Le,_, )" Le ] )
U, +L(elz — 0 ( "Iiel ) ”2 keka—l ) ’ “ué~1 n< "uk H
Uy = % k_lr , t€& [ 0,T] (16)
U, _|_L(€k —h Ly lglekek—l ) ’ Iﬁ}r—l ”;'3 ”a& “
a | Lex— |
Because ¢ and h are undetermined parameters in [ 0,1 |, (16) can be rewritten
(Ley_1) ' Le,
U,+1 — U “I’L(ek_d 7 ek—l)! ”uk _"Le.!:”> ”“k” (17)
| Les- |
At last, from (13) and (17), we obtain a general new algorithm structure
(Lek—l )Tllek

wen =+ L{e—o T et ), t€[0,T] (18)

where 6& [ 0,1 | is an undetermined parameter. According to early discussion, parameter o
is variable in the iteration. We will discuss the vanations of the parameter ¢ later.

3 Convergence analysis of the new algorithm

In the above section, based on the geometrical analysis of the vector plots yielded
from the ordinary algorithm, we derive new algorithm structure (18). The new algorithm
structure 1s entirely different from the ordinary algorithm and it 1s nonlinear. Because the
new structure is derived by directly observing and synthesizing the vector plots, the con-
vergence and efficiency of the algorithm need to be analyzed and simulated. In this section,
we only analyze the convergence of the new algorithm, numerical simulation will be given
in the next section.

Before the convergence of the new algorithm is discussed, two lemmas are introduced
(their proois are omitted).

We assume x, (0)=x,, £=1,2,3,, M, (t)=u,,(t)—u,(t). In this paper, the
definitions of the norms are the same as in | 4 .
dlpo
1—=p
then there exist §>1 and appropriate large positive number A, so that for positive con-
stants ¢y,a, we have F(4,8) &€ (0,1), where,

o écal (1 -+ o) -
A = - o&d!
PO = T a—ay T

Lemma 2. For an appropriate large A and §>1, we have the following estimation

L
fo) Ay ] e

—

Lemma 1. If p,0¢ (0,1), for positive constants d,/, inequality <1 1s satisfied,

me — X; HM.EJ < A (A

Now we discuss the main problem of this section——the convergence analysis of the
new algorithm.

Theorem 3. If the parameter o and the gain matrix L(¢) in (18) satisty

D | I—BL() || <pE[0,1), 2) Pff_f;la,

then input sequence {u,(z)} of system (2) determined by (18) is uniformly convergent on
[0,T ] and limek(t):-——o, Vi€ [0, T], where {= sup |L()|, Lg= sup |B)|.

0= T Ot T
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Proof. From the defin:tion of e,(z), (2) and (18), we have
e, ()= €,(t) — (C(xp 1 () st)— CCx, (t)52))— B) (up  (t) —u, (1))
= (I =B L)e,(t) — (C(x, ., () st)— C(x, () a1))+
(Le, 1 (1)) Le (1)

B (1) le,_, (1)
] "Iﬁk_l(r)“ P o ](f (19)
Taking the norm for the above equation and using conditions 1) and (5), we get
le. i (O | < ple ||+ Lo | | %60 (2) —x, (0 |4+ 0| B || | Le, () | (20)
Let |L¢|<Cc; then
e, ()< o e, () [+ Ep* Hellx i () — x| Hol gl Le ()] ) (21)

At first, we choose an approprlate large A so that A— L, >0, Since p,0& (0,1) and
condition 2), from Lemma 1, there exists §>1 so that ~(A, 5) < (0,1), where

e T&L A1 +0)

F(A,8) — [
: ] —&pl A(A—L;)

For the above chosen A and &, from Lemma 2, it follows that

- GEL (22)

k—1
(Ilem)ll?‘f)e*” < “ €o Hl =+ 2(195)&5#15(/1(;&}” ”A” Hmsv + oL g/ "9 "ua) (23)
From (18), we get
| Auw. () | < 1] e. (D) |+ ol]le.()]= (14 0)]e () (24)
thus
| Quy G << (140 |e o (25)
Substituting (25) into (23), we obtain
(” eé(f')“ e < “ €o ”A + F(A,8) 12111}}&{ ” €, ”u.a } (26 )

Since the right hand of inequality (26) i1s independent of ¢, taking the supremum on both
hands for t, we get

el e << e | + F(A,8) %up e e (27)

From LLemma 1, we have F(4,6) & (0,1), and sup{”é’ | e xhl_F(A 3%

So, for ¢e€ {0, T |, we obrain

EoAr p AT | e HA
”eé(‘t)”é F € 1;]*?5&{ ”ei “{LEJ }“*-<-h F € 1 L F(AgE) (28)

Since £>1, lim|e., ()] =0, Vt€[0,T). The proof of uniform convergence of {u,(z)} is
o

omitted.

The structure of the algorithm (18) is obtained from all the cases in the iteration
process, The value of the parameter o corresponds with all the cases in the iteration

process. Since each case 1s possibly alternate in the process of iteration, ¢ should be a vari-
able number and an adaptive factor along with the convergence of the learning process. In
this paper, we select o=c¢(1—e 1%l Yy  where (a,8) € (0,1) X[0,+o0) is a pair of ad-
yustable constants. The pair determines the variation amplitude of adaptive factor o along

with the error.

Since (a,B)€ (0,1)X[0,+c2), 6&(0,1). The new parameter factor does not influ-
ence the convergence analysis.

Consequently, we obtain a new learning algorithm with an adaptive adjusting factor

T
le, ) I
.., — U, "_1;(6& _{?(1 — EXp('_JBN‘?!& ” ) ) ( ” ;;:__)1 l|;€ke§__1 ) ’ 4 6 I:OfT] (29)

4 Comparison with other algorithm by numerical simulations
To explain the superiority of the new algorithm, we make simulations on the follow-
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ing example via the new algorithm and the ordinary algorithm,
Example 1. Consider multi-input and multi-output nonlinear system

X(t) = Ax(t) 4+ f(x(2) )+ Bu(t)
y(t) = Cx(t) 4+ Du(t)

Wherex(z)=(xl(t)), u(t)=(ul(t>), yu):(}”(”), A———(l 2), B::(l O), C=

.I'g(t) Hg(lf) yz(f) 2 1 0 1
1 O /1 0 _ (sinx; (1)
(O 1)’ D= (O 1)3 f(x(t))—(cosxg(t))
The aim 1s to track the expected trajectory y, = (y]”(z) ) = (551251) within t €[ 0,2 ]. Tak-
Vo a () 41

1 1

INg Q':O.S! BZO.Q! L-:(O 1

), we have the corresponding algorithm

T
(Ley_; ) Lekek.q )

U, .1 — U, —‘_L(E,@‘_0.8(1_6}113(““'0.9“3&")) (31)

where W, = (U s Uss )T s € =Yg Yres V2™ (yu s Vor )T-

Let the initial state and initial input of system (30) are x,= (0,0) ", us=1(0,0)", t&
| 0,2]. Fig. 4 shows the tracking process (at 12th, 13th and 14th iterations, the tracking
aim 1S y;,(2)) for the ordinary algorithm (6) and the new algorithm (31). Fig. 5 shows the
tracking process (at 9th, 10th and 11th iterations, the tracking aim is v,;(¢)). The same
results can also be found obviously from the tracking error diagrams (See Fig. 6).

20 ¢ 6 ¢
40 |

20 “1 \
= 10 = 0

0 k=12

__2 -
— 10} E=14
— 20 —4 k=13
~— 30 4 ] : - . —h : & ‘ —6 - L . ! PR ) —_— ) J
0 0.20.40.60.81.01.21.41.61.8 2.0 0 0.20.40.60.81.01.21.41.61.8 2.0
4 4
(a) ordinary algorithm (b) new algorithm

Fig.4 The first component of output of the learning control system

Jor

— 40

0 0.20.40.60.81.01.21.41.61.82.0 0 0.20.40.60.81.01.21.41.61.8 2.0
L !

(a) ordinary algorithm (b) new algorithm

- | A | 0 N I '

Fig.5 The second component of output of the learning control system
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Fig. 6 The maximum tracking error curve in every iteration

§ Conclusion

In this paper, we intend to establish a new theoretical frame for iterative learning con-

trol by using the mathematical vector plots analysis. A class of new 1terative learning con-

trol algorithm 1s obtained by analyzing the vector plots of the ordinary algorithm. The nu-

merical simulations show the advantage of the new algorithm. In realizing the new algo-

rithm (29), we only give an approximate expression. More accurate realization of the algo-

r

1

1

=]

8

9
y

|

ithm needs joint efforts made by more experts. Our work is just intended for establishing

the geometric theory frame of iterative learning control.
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