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Application of Evolutionary Neural Networks in Prediction of
Tool Wear in Machining Process”
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Abstract An improved evolutionary method based on real-number encoding is presented to opti-
mize the connection weights and the topology of neural networks. The algorithm could adaptively
adjust magnitude of mutation according to individual fitness, and mutation rate will increase with
evolving generations as soon as evolution gets into stagnancy. Experiments show that the evolu-
tionary artificial neural network is efficient to predict tool wear in electrical discharge milling ma-
chining and the prediction results are better than the standard BP neural networks. The proposed
prediction model can be used for tool compensation on-line in electrical discharge milling machi-
ning.
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1 Introduction

Evolutionary algorithms (EA) search from a population representing different sample
points in the search space. So they could find the globally optimal (or near optimal) solu-
tion with a higher probability, The combination of ANN and EA produces evolutionary ar-
tifictal neural networks (EANN). Evolution has been introduced into ANN at three differ-
ent levels: connection weights, architectures, and learning rulest’’. Porto, V. W. et al.
demonstrated that evolution and annealing approaches outperformed back propagation con-
sistently'*), Fogel indicated that evolutionary programming ( EP), evolutionary strategy
(ES) and genetic algorithm(GA) were similar, and there appeared to be no sctentific rati-
onale for discriminating between ‘genetic’ and ‘evolutionary’ computation®®!,

Electrical discharge milling machining (EDMM), as a new kind of electrical discharge
machining (EDM) technologies developed in the late 80's of 20th century, applies standard
and simple shaped electrode which moves along certain tracks to different discharge place
between electrode and workpiece for required shape'*!. Because the wear of electrode in
EDMM is substantial, compensation for the wear i1s crucial to improve machining precision
and productivity. General strategies to compensate tool wear are:replacing or dressing tool
and compensation, tool wear measuring and compensation®). However, the methods are
unsuitable for real production due to {frequent interruption of machining process. A better
method 1s to establish mathematical model for tool wear prediction according to wear rules
obtained from vast processing experiments,

Because of the control problem of the stochastic, non-linear, multi-parameters and
time-varying, it 1s difficult to accurately build a mathematical model for predicting tool
wear. A prediction model of tool wear based on an improved EANN 1is proposed, which
can be used for tool compensation on-line.

2 Design of EANN
An important task in the development of EANN is to design a set of genetic opera-
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tors. The most widely used genetic operators are selection, crossover and mutation. Three
genetic operations play different roles in EA. The selection acts as a guide, by which the
initial random sampling of early generations is concentrated towards those areas of the
search space demonstrating better-than-average performance. The crossover provides the
necessary mechanism to exploit beneficial material originating from two different chromo-
somes. The mutation could bring new gene to recover diversity of population'®™. There-
fore, the design of the mutation operator is crucial to improve EA local search ability and
accuracy of the evolutionary training.
2.1 Encoding scheme

The most convenient representation of connection weights is binary strings, which are
termed chromosomes. The advantages of the binary representation lie in its simplicity and
generality, It is simple to apply evolving operation to binary strings. However, chromo-
somes representing large EANN will become very long and the evolution will become very
inefficient., Real-number representation can overcome some shortcomings of the binary en-

51, and domain knowledge could be introduced into evolutionary search pro-

coding scheme
cedures to improve their performance. Therefore, Real-number representation i1s adopted
in this paper.

The number of hidden layer nodes 1s randomly i1nitialized in interval (0, 50), and all
the weights initialized at random are a series of real nurnbers in interval [ —1,1 ].
2.2 Selection operator

Selection mechanisms have great influence on EA convergence rate. The choice based
on individual fitness-propcrtionate will lead to premature convergence and stagnation. The
linear rank for individuals order is adopted in this paper. Let P sorted individuals be num-
bered as 1, 2,---, P. The formula for computing the reproduction probability of the ith in-

dividual can be expressed as follows.

P
p.=(KXi+B)/ > (KxXj+B) (1)

j=1
where coefficient K affects on selection probability of individuals, The larger the value ot

K, the higher the selection pressure is. But the selection pressure will depend inversely on
parameter B. To ensure an appropriate evolutionary rate and diversity of population, coet-
ficients K and B have to be properly determined.
2.3 Crossover operator

Because of the changeability of network architectures which are mapped by individuals
in population, crossover operators will be different trom the traditional ones. Two parents
are chosen from the population at random where the weights for the same number will be
adjusted by crossover operation under the condition that the remaining weights are kept
unchanged. Each individual is taken as a real connection weight vector. Let G, =(g;;» g2
ooy gin) and G, = (g1 s 8257y g2, ) denote two parents respectively, m<n. Let R, = (ry;,
rios*ts 71,,) and R, = (ra1 5 7905 ***y 12, ) denote two offspring. The components for off-
spring R, and R, which have been obtained by the crossover operation can be expressed as

follows.
ro=a; X gu T (1—a;) X g (1< =k)
ri, — &K1 3 (1 >k)
rz;':(l—af)x §1f+ﬂ[>< 82:3 (1< =Fk)
Fo2i — K2 % (1 >k)

where k£ denotes crossover point, £2<m. a;,a,,***,a, are random numbers generated in in-
terval (0, 1).
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2.4 Mutation operator

Traditional binary mutation will not be used directly due to real-number encoding
scheme, and special mutation operators have to be designed. The mutation operators could
be divided into two parts: mutation rate and magnitude of mutation which can be used to
adjust weights. The two main mutation operations for EANNs are as follows. 1) Hidden
nodes and their corresponding weights are added (or deleted) ;2) Some weights selected at
random are adjusted.
2.4.1 Mutation rate

The mutation rate in common EA is usually a small constant or variant related to indi-
vidual fitness, and the mutation rate bears no relation to the number of evolutionary gener-
ations. Consequently, population falls into premature convergence and stagnancy after a
number of generations. The mutation rate which depends on the number of evolutionary
generations can be calculated as follows

P = Pm, Tt XC (2)

where p,, denotes current generation mutation rate, p, 1s an initial mutation rate, set to
be a small value between (0, 1). C is user-defined small constant set in the range (0, 1),
which influences the difference of mutation rates between two successive generations. The
parameter ¢ is the number of generations. If the fitness values for current individuals are
larger than the ones for last generation, set t=0, otherwise t=t+1. (2) shows that mu-
tation rate will increase with evolutionary generations as soon as evolution gets into stag-
nancy. If the number of generations ¢ has reached the threshold determined by p,>1,
which implies the population has trapped into premature convergence, then only mutation
will be carried out until no prematurity occurs or the number of mutation reaches a speci-
fied number.
2.4.2 Magnitude of mutation

Reter to standard BP algorithm, EANN are optimized by adjusting weights whose in-
crements Aw,;; depend on individual fitness. An algorithm similar to simulated annealing
algorithm to compute the increment is proposed, in which the ith individual temperature
wdt; is introduced and defined as'®"’

max f=1/(14e¢,) (3)
wdt;=1— f;,/max f (4)

where f; is the fitness of 7th individual, and
fi=1/(e; + 1) (5)

e; denotes the desired square error, e; denotes the actual square error of ith individual,
max f denotes the biggest individual fitness value corresponding to e;.
Then the weights can be calculated'’ as follows
Aw; = (1 F w,;) X (1 —r*) (6)
Wi — Wy :|'_' A'wij (7)
where w;; is the jth weight within 7th individual, Awj; is the increment of the weight w;; ,

r is a random number in interval (0, 1). sis a parameter within the range [2, 5]'"1, which
plays the role of tuning local search region. ‘-4’
domly with identical probability.
2.5 Evolution procedure

For the purpose of improving EANN convergence rate and prediction precision, the
neural network model is divided into two sub-models which can predict removal rate and
tool wear ratio respectively. Training procedure for the two sub-models is listed below:

Step 1. 2<-0. Randomly generate an initial population of P individuals (P =100),

indicates increment signal chosen ran-
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Each individual corresponds to an ANN with 5 inputs, 1 output and A hidden neurons,
where h is initialized in interval (0, 50). The number of hidden nodes and the initial con-
nection weights for each individual are generated at random. Initialize all the hidden layer
weights using a series of random values of a closed interval [ —1, 1.

Step 2. 1<0.

Step 3. Feed training patterns (i. e, samples) to the ith ANN in sequence. Use sig-
moid activation tunction for hidden layer and output layer. Set the number of training pat-
terns to be M. Let m change in range [0, M—1]. Compute the output square error e, of

ith individual using the following equation
1 Al—
e, = —

M

m:

1
(y:(m) —d(m))° (8)

where y,(m) and d(m) denote respectively actual output and target output for ith ANN
model and mth training pattern.
Step 4. i1<i+1. If <P, return to Step 3;otherwise go to next step.

Step 5. Order individuals based on their fitness values, and then perform reproduction
according to the method in Section 2. 2. Set reproduction probability to be 0. 95.

Step 6. Recombine two individuals selected randomly by the crossover operation in
Section 2. 3.

Step 7. The first mutation operation will cause greater behavioral changes on individ-
uals than the second one. Therefore less mutation probability is used for the first one (set
to be 0. 01). For the second mutation operation, mutation rates and magnitude of mutation
are calculated according to the method in Section 2. 4, and set p,., =0.001,C=0.005. If
the number of generations ¢t has reached the threshold. then only mutation will be carried
out until the number of mutation operation reaches the number of connection weights for
the individual at least,

Step 8. Select the best individual from the population. Calculate square error accord-
ing to (8). I the error is less than desired error e;, go to the next step, or else k<k—+1
and return to Step 2.

Step 9. Preserve the best individual mapping prediction network which can be used to
calculate removal rate or tool wear ratio.

3 Tool wear prediction

There are very large number of factors influencing EDMM process, such as peak-cur-
rent, pulse duration, duty cycle, reference voltage, free voltage, tool rotating speed, tool
discharge area, feed speed, electrode polarity, electrode material, workpiece material, die-
lectric fluid, and so forth. By theoretical analysis and experiments, five main parameters,
namely peak-current, pulse duration, duty cycle, tool discharge area and feed speed, are
chosen as input parameters of the proposed EANN, The other parameters are set below:
tool rotating speed——300r/min, free voltage—80V, electrode material——copper, work-
piece material—No. 45 quenched steel, dielectric tluid——Kkerosene, tool polarity-positive.

The outputs of the XANN are tool wear ratio and material removal rate. A three-layer
network is considered in our experiment, which can distinguish arbitrarily complex deci-
sion regionst®, The above improved evolutionary algorithm was used to optimize the num-
ber of hidden nodes and connection weights. Table 1 shows some prediction results of the

proposed EANN.
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Table 1 Experimental results

Machining parameters Target results Prediction results
i Material
PUIE_E Tool discharge Duty Peak- current Feed speed Material Tool wear stena Tool wear
duration (mm?) 1 (A (mm/min) removal rate atiol %) removal rate ratiol %)
(25) area( mm cycle mm (mm® /min) 0 (mm? /min) 0
40 10 1 5 30 5. 21 5. 2 5. 68 5.4
80 20 2 10 60 12. 26 6 11. 44 5. 71
240 30 3 15 G0 17.71 3. 8 19, 92 3. 36
400 40 4 20 120 23. 14 2.3 20, 83 2. 36
240 10 2 5 90 7. 08 1.8 7.93 1.98
40 30 4 10 30 10, 43 10. 8 9. 68 11, 26
80 40 3 15 120 18. 86 9.0 18. 67 0,12
400 20 1 20 60 22, 85 2.2 24, 02 2. 24
400 10 4 5 30 7.17 1.0 7. 33 0. 86
240 30 3 10 60 13. 95 2,8 13. 09 2. 89
40 20 1 15 120 14, 87 12. 2 14. 68 12. 5
80 40 2 20 30 25.57 17. 8 25. 97 18. 56

It is clear that the maximum prediction error rate ts 14% and the minimum is 1. 0%
calculated from Table 1, which are less than the errors 17. 8% and 2. 1% obtained from
BP network respectively. Results indicate that the improved EANN is efficient and the ex-
periment results are better than the standard BP neural networks'.

4 Conclusions

An improved evolutionary method based on real-number encoding is presented to opti-
mize neural network's connection weights and its topology. The algorithm could adaptively
adjust mutation rate and magnitude of mutation according to individual fitness. Mutation
rate will increase with evolving generations as soon as evolution gets into stagnancy. In
addition, because architectural mutation causes greater behavioral change, weights adjust-
ment is always considered first before architectural mutation. Experiments show that the
EANN is feasible to predict EDMM process and the prediction results are better than that

of the standard BP neural networks. The EANN lays a foundation for tool compensation
on-line in EDMM.

The maximum prediction error rate is 14 %, which is mainly caused by machining sta-
bility. Better results could be expected by improving the performance of pulse power and
the performance of the experimental device developed by the authors, and by perfecting
training patterns.
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