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Abstract An adaptive robust track =g problem is investigated when a discrete-time plant is sub-
ject to both unmodelled dynamics and unknown external disturbances. Firstly, combining the ¢,
optimization and deadbeat control scheme we present a procedure for designing the optimal robust
steady tracking controller. Then, based on the idea of set-membership identification, we propose a
recursive estimation for extended parameters which include the parameters of nominal model and
the bound of unmodelled dynamics and disturbances. Finally, we propose a novel adaptive robust
tracking scheme, and prove the overall convergence of the adaptive algorithm. For this scheme a
computable tight upper bound on robust tracking performance is also provided. The adaptive
scheme proposed in this paper has non-conservative robust stability and asymptotically optimal ro-
bust performance.
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1 Introduction

The ¢, design methodology, formulated in the mid of 1980’s, 1s concerned with desig-
ning a feedback controller that reduces the effect of uncertainty on system'!. If this uncer-
tainty is in the input/output, that is, the plant 1s subject to unknown external persistent
disturbances, ¢, controller can be desighed to reduce the effect of disturbances on output to
the greatest extent. If the uncertainty is in the plant, that is, the plant is subject to un-
modelled dynamics, ¢; controllers can be designed to robustly stabilize the plant. There-
fore, the ¢, optimization is recognized as a kind of practical robust design methodology'?.

There are many advantages using the ¢, optimal design method to deal with the uncer-
tainty system. For this reason, application of the ¢, design method to develop adaptive ro-
bust control has become an important and significant research subject. In [ 3], the ¢, opti-
mal design method is firstly used for the design of adaptive control scheme for the optimal
rejection of unknown persistent disturbances. In [ 4], the adaptive robust stabilization of
the plant with unmodelled dynamics has been investigated, and an adaptive control scheme
was provided based on the certainty equivalence principle. This work is extended to sys-
tems with coprime factor perturbations and external disturbances in | 5]. Up to this point,
the existing research only addresses the problem of adaptive robust stabilization, and the
conditions of robust stability are very conservative as compared with non-adaptive control.
Moreover, it is difficult to consider the adaptive robust performance, such as robust track-
ing performance, in the framework available.

This paper investigates an adaptive robust tracking problem when a discrete-time
plant is subject to both unmodelled dynamics and unknown external disturbances. First,
combining the ¢, optimization and deadbeat control scheme we present an exact formula for
computing the optimal robust steady tracking error. Using this formula we show that the
robust tracking performance optimization is equivalent to robust stability optimization, and
both are reduced to a standard linear programming problem. Then, based on the idea of
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set-membership identification, we propose a recursive estimation for extended parameters
which include the parameters of nominal model and the bound of unmodelled dynamics and
disturbances. Finally, we propose a novel adaptive robust tracking scheme, a tight bound
for robust performance and prove the overall convergence of the adaptive algorithm, The
adaptive scheme proposed in this paper has non-conservative robust stability and asymptot-
ically optimal robust performance.

2 Notations

ol

def de f def
| x||.. = max\x(z)} b = {x:]x]c <o}, x| = Z

=0

Jﬂ(i} ‘9

def de f
/) = {x:”x“'l < 0D}, €y = {xefm\limx(k) = 0}

p—= o0
de f
Let 2= EI(:),.;, denote the z-transform of sequence x. It is clear that ¢ is equivalent

=0
to the forward shift operator, and that the normed space A 1s isomorphic to ¢, space. So x

and Z can be viewed as the same where no confusion occurs.

Let R[ 2] denote all the real coefficient polynomials of complex variant z, and 3(%)
denote the degree of polynomial #. Clearly, R(2) € A.

Let S, denote the right shift operator with d steps, 1. e., S; (x(0),x(1),x2(2) )=
(O;OLx(O)ax(l)al(Z)a'“).

3 Optimally robust steady tracking control
Consider the class of uncertainty SISO discrete-time systems described by

(a(z2) — A)y() = 29D () u(t) + v(e) (1)
where y(z), u(z) and v(z) denote the output, input and external disturbance, respective-
ly, t is the discrete time, d is the controlled delay.

a(z) = 14+a(D)zt + 4+ aln)z", b(z) = b0) +b(1)z" + =+ +b(m)z"
where A denotes the unmodelled dynamics.
Assumption 1. The structural parameters n,m,d are known a priori. The polynomials

a(z) and 6(z) are coprime, that is, they do not have the same unstable zeros.
Assumption 2. The unmodelled dynamics A€ D.. g (w,s) s where Do, gy (w,) ={A:A is

the casual time-varying operator with finite-memory, and satisfies |A|, = { sup ”lrﬁ(”mé

wﬂ} , which implies that there exists x>0 such that |Azx(?) | << w, { max x(t—k) |}

0 R
where Ax () = EA (t—k)x (k). The external disturbances satisty sup | v(2) | <w,.

k=t—u

Con51der the feedback system depicted in Fig. 1, where ¢ is the controller, r 1s the ef-

v E . | j

Fig.1 Feedback system

Assumption 3. r€ D, (a,),where D, (a,)={r=0b,4,':a, € R[ 2] is known, but b, €
R[ 2] is unknown). The polynomials a, and b are coprime.
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Definition 1. The teedback system depicted in Fig. 1 is called robust Z.. stable if the

system is inner-stable for any A€ D., g (w,). Denote by e=r—y the tracking error. If the
plant is robust /.. stable, and the tracking error i el =1im sup|e(®) | is

F Al

defined as the steady state tracking error.

In this section, we provide, under Assumptions 1~3, a method for designing control-
lers such that feedback system depicted in Fig. 1 satisfies the following specifications:

1) For any given reference input 7€ D, (d,) , the tracking error settles down to zero in
a finite number of control steps in the case that A=0 and =03

2) The teedback system has optimally robust /.. stability, and the worst-case steady
state tracking errors

Jtrar:: — SUup SUup

2ED myCoy) Noll o<,
i1s minimized.
3.1 The formula of worst-case steady state tracking performance

In [ 6 ], The computation of formula of worst-case steady state tracking performance is
firstly provided for the systems free from external disturbances. The following theorem,
aiming at the systems with both unmodelled dynamics and external disturbances, provides
the robust stable condition and the formula of worst-case steady state tracking performance
in the same way. ) ) )

Theorem 1. If the reference signals satisfy G,,r € ¢ and G,,r € /.. , where G, is the
transter function from r to y in the nominal system in Fig. 1, then

1) For the given A€ Do g (w,) and external disturbance v, the closed-loop system
depicted in Fig. 1 is robust stable if and only if w, |G,: | a<C1;

2) It the closed-loop system is robust stable tor A€ D.. g (w,), then )
Juw = A =G +w, Gy 4 +ws |Goe 4 (1= ws |G )7 UGy Gyl 4>

Proof. Since the robust stablhty 1s not affected by the external disturbances, conclu-
sion 1) follows from [ 6 |.

We shall prove conclusion 2) the same way as in [ 7,8 ]. The only difference here is to
consider external disturbances. According to the Theorem 2 in [ 7|, the closed-loop system
which subject to A€ D.. gy (w,) and disturbance v(|v|. <<w,) satisfies ||y|., <1 if and
NGy +Gv| wal| Gy ‘A‘<1

"G ?’“‘“G ‘ss wﬂl gé‘ - “ -
From |G, r+Guoly < 1Gyrls + w, [Gulls and |Gr+Grol, < |Gor]
w, | G,?v | A it follows that

B Gyrr+GyvU| 58 W ‘G}re IA_lgp_

Only if 0

5§ +

s T Wy Gy'a IA W

¥ wﬂ| nE‘A- T W, va A wﬁ.leE“A..
Also, in the same argument as the Theorem 3 in [7] we can construct the signal v such
that | Gw‘v 5 = W, ”G |+ and "G,?U'v . =W, | G,ﬁ, | . This means that there exists v such
that the equality in the above inequality is true. Therefore, Theorem 2 in | 7] can be ex-
tended to the following conclusion: The closed-loop plant depicted in Figl, subject to A&
D gy (w,) and disturbance v ( lv||.. < w, ), satisfies ||y|,, << 1 if and only if
i G ss__wvl(}w "A wWa [(}ys ‘A_
P_ quru” ——wle@ I A w‘ﬂ‘Gv{-“A _

sup, - sup_ |

A€ D, ppwy) ol o ) ) X

H G.}’TT 55 y'ﬂ “ A + wa H G:,'EAH A (l WA ” Gr}E "A 2_1 ( ” G,FT‘
In the above equation, substituting |G,.» ||, with |(1—G,,)r
This completes the proof.

3.2 The optimal steady state tracking controller

The stabilizing compensators of nominal system can be parameterized in the form [ 1]

:}'T'

< 1. Also according to Lemma 2 in [ 8], we have

55

§§ _|_w'ﬂ ”éqﬂ ”A)

.. we obtain conclusion 2).
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C=d'n=(y—2%g) (2 + aq) (2)
where 2?62 +ay=1,y—2b 970, ¢ is the free parameter satisfying g€ A.
Since G, =1—G,, , it followsi from Fig.1 and (2) that
G.,.r = a(y— zd(;é)grci:l (3)
Now we determine the free parameter g such that the system satisfies the specification 1),
which implies that G,,r is a polynomial. Let a=a,q; and 6=5b0,, where a; and b, are unsta-

ble polynomials of a and &, respectively. a, and b, are the rest unstable polynomials, Clear-

ly, both a, and &, are stable polynomials. Define g=a;(y—2%g)a,; ', we have

-~ &zj T ar‘g (4)
! Zd(i;'g

It follows from (4) that ¢, € A if and only if aiydjfrg € R[z]. Let 4y A8 ] a;:=af,

< afbi zddibi

&r‘:&:ﬁ, where ZS’ 1s the greatest common divisor of a; and a,. Then (4) can be rewritten as
the following Diophantine equation.

abh +ag = aly (5)
From Assumption 3, (5) has solutions. Denoting by &, and A, the smallest degree solu-
tion, 1t 1s clear that all solutions of (5) can be represented as

X g = go—2'abk (7)
where the free parameter £ & R| z | is an arbitrary chosen polynomial. From (4)~(6), the

controllers that satisfy the specification 1) can be represented as (2) with the free parame-
ter

g = Mo T ak (8)
b
where £ € R[ 2]. With this controller, it is clear that g is a polynomial, thus
G.,r = a,gb, € R[ 2] (9)
From (6) and (8), it follows that g& A. Thus, (9) implies that with any controllers of
(2) with E}—hU - ak , the tracking error settles down to zero in a finite number of control

¥

steps for any given reference input r& D,(d,). That is, with this controller the specifica-
tion 1) 1s satisiied.

Therefore, for a given r€ D, (d,), the problem of designing optimal robust tracking con-
troller can be reduced to that of choosing £ € R[ 2 ]such that J,..=  sup sup le il i

ss 1S
+ . . _ N ﬂEDm_FM(wﬁ) ”"U" m'--..‘wﬂ
minimized. From (2), (8) and Fig. 1, we have the following transfer functions.

Gy, =G, =G, =G, = y— 2%bq (10)

G., = a(y — zbq) (11)

G, = z"‘i{;(i‘—i—ﬁé) (12)

It follows from (9) that |(1—G,)rl,, = |G.r|.,.,= la.gh,|..=0. Also, from (11) and
(12), we have G, +G,, =1, thus “G,F.r s =r—G.,r|,=lrll,. Then, from (10), the

worst-case steady state tracking error can be written as: )
Jiowe = wo |Ge 4 +walGre 4 1= wa |G |7 (7]l + w0, [Goe 4D (13)
Thus, from (13) and Theorem 1, it follows that the problem of minimization of J,. is e-

quivalent to the one of optimization of robust stability, both are reduced to the same ¢, op-
timization problem

u = inf|[Gella = inf]| 5 — 2B | 4 (14)
| €A G€ A o X o .
Substituting (8) into (14),we have p= irI%[fj | (3—2%:ho)—2% k|| a. Let a=3— 2% hy
& Rz

Z?=de: , n,—0(a) s nﬁ=a(f9) , the problem (14) can be rewritten as
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y = inf”a’—{'ﬂ){kul (15)

k€ RP
where p is an positive integer not less than zero. From (8) ~(10) and (15), we can con-

clude that the degree of controller and the settling time increase but x decreases as p in-
creases.
Let M=max{n,,n;,+ p}, and the optimization problem (15) is equivalent to

M t
p=inf { 27 [a(®) + 38— DG || (16)

Let a(t>+2[ﬁ(t-j)k(j)]:?5(t)+ —¢(2)~ , where ¢(£)7 =0, #(¢) =0. From [ 9], it
j=0

M t M
follows that 3 [a(t) + D)8t — Dk | = DI[$(D* +$()~ ]. Thus the problem (16)
t=0 =0 t=0

J
1s equivalent to the following linear programming (LP) problem:
g = miny (17)

M
st y— O [BOT+8() =0

()T — () — > [BUt— DEG) ]= alt)

?B(Z)Jr }-——* 0, ‘zﬁ(t)‘— ;35 O, t = 0919"'5M
Let 2™ denote the solution of the above LP. Substituting it into (8), we can get the opti-

mal parameter gq.

From the above argument, we obtain the following theorem.

Theorem 2. If the controller of (2) is designed according to (5) ~(8), then the opti-
mization of robust steady state tracking performance is equivalent to the optimization of ro-
bust stability. The problem of designing controller is reduced to solving the standard LP
(17). For a given p, the minimized worst-case steady state tracking error is represented as

— e r w
Jtrac wwﬂ 1 1 . wﬂp ( H 58 _I— 'uf—l)

where u 1s the solution of LP (17),

4 Adaptive robust steady state tracking control
4.1 Adaptive control algorithm
We will consider the system described by (1), which can be rewritten as
y(@) = ¢t — D0+ (—Ay) () + ult) + v(t) (18)
where 8" =(a(1),**+,a(n),6(0),,6(m)) and ¢G—1)"=(—y(t—1) =+, —y(t—n),
ult—d) o yu(t—m—d)).
Assumption 4. A€ D, gy (ws) s sup|v(®) | <w,, and parameter 8, w, and w, are un-

known, but 0<Cw,<w,, 0w, < wW,, where @, and @, are known.

In the following, we will present a recursive parameter estimation based on set-mem-
bership identification. Denote the present and past observations of the system output and
tnput by {y(0), y(1),,v(#)} and {«(0),u(1),,u(t—d)}, respectively. Denote the

extended parameter vector by § = (4" ,w,,w,)'. From (18) and Assumption 4, all extend-
ed parameter vectors that are compatible with the prior information and observations satis-
iy the following inequality

| y(B) — ¢ — DT < [AyB) |+ |vk) | < wa{ max |y() | }+w,, 0 k<t

k—yﬁgsﬁk
(19)

Let ¢, G— D "'=(—yG— 1D, ,—y(t—n)),$,¢t—D"=(u(Gt—d) - u(t—m—d)) ,s(t) =
Sign{y(®)—¢G:—DT0G¢—D}, oy ¢—DT=[s()$,t— 17T, max |y(s)|,1]7, ¢G— 1T

- pss st
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=[s()e(z— 1)1, max. | y(s) | ,177. Denote the parameter estimation at time ¢ by §(t)=
A JTEEN B

[6()" ywhy,wt ]y where 8(2) = (a’ (1), ,a’(n) ,6'(0) ,+++,b'(m))" is an estimation of pa-
rameter § at time ¢. From inequality (19), it is clear that 8 (¢) satisfies
sy <=1 —1) (20)

Now, we present an estimation algorithm for extended parameter vector as follows

(t — 1Dt — 1) _ _ _
6(t) = 0z —1) 4+ 1 (D v() — gt — DTG — 1) (21)
bt — D gz — 1 Py = ]

where E(t)ﬂ[ﬁ(t)T,be,t‘bL]’I , and
W=D = |1 sy —¢G=DTG=1D >3 Vp =D =D (32)

0, otherwise
where § >0 is a given weighting that specifies the dimension of dead zone. If the estima-

tions w) and @’ obtained by algorithm (21) and (22) do not satisfy Assumption 4, then wj
and w), are chosen as follows
if @4 <0, then w), = 0; if @, = w,, then w) = W, (23)
if @) << 0, then w!, = 0; if @), > w,, then w! = w, (24)
Lemma 1. The algorithm (21) ~(24) has the following properties:
1 ) =6, 1P<[0G—1)—0, [2<[60)—0, |2
—_— ___1 T p —1 2
%) lim[s(t)y(t) (,b(tT ) 0¢—1) 1
=2 p(t—1) " p(t—1)
3) lim||8()—0G— 1| =0
If there exists a positive number ¢ such that |¢,(¢—1) |<c, then the algorithm (21)
~(24) also has the following properties

4) There exists a positive integer N* such that § () =lim §(¢)=: §(c0) as t=N"

==

e
T

5) For the above given N* ,

| y(2) — ¢ — D7) | < (S v+ 1+ wy){ max | y(s) | )+ (wf +6) (25)

% I—p-_..._‘s-...ﬁt
as t=N
Proof., It results from [ 10 ] that the convergence of estimation algorithm will be im-
proved by parameter constraint. Thus we need only to prove the above properties in the non-

constraint case. From (22), we have 0(z)#%60(t—1) when s(t)y(r)*¢(z"1)T§(r*1)>
8 Vi t— DT (t—1). Taking 6(2) =6 (¢) and subtracting 8, from both sides of (21)

give
16(>—8, =] (t—1)— 50llz+2[9(z—-—1)-——@{;.]”9(t~1)[S(jzf’iﬂ)) gf((f:f)) 8G=D],
o= D G— D [s@®y(@) —¢G—DTo¢—1) T
[gG— D gp(e—1) ]
Since s(£) y(£) —p(t—1>T,=0, it follows that [0 (t—1)—8, |Tp(t— D =¢(t— 1T (1 —
1)—s()y(z). Substituting this equation into the above equation, we have
sy —gG— D9 —1) ]°
02 ¢(¢—-¢1) Tg(t—1) : (26)
It is clear from eqns. (21) and (22) that H@(t) 8, H2<||9(t—1) G, |*. This establishes 1).

—_— — 2
Summing up both sides of (26) with respect ¢, we get Z sy (;zz*Sbl(;Tgbg--el()t D]
=1

, , , [sCy(e) — ¢t — 1)79 (1— 1)1°
16 (0)—8,ll 2— 16 (N8, || 211§ (0) —8, || 2, which implies that lim MZ; W— DT gt— 1)

(oo, Then 2) follows. From (21) and the property 2), we can easily obtain 3).
When s(£)y(t) —¢(t—D"0G—1)>68 /¢ ¢— DT ¢ (—1), it follows from (26) that

16¢e) —8, ]2 = |6t —1) — 6, |
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_ — — — _ T _
o —6,17<<oG—1>—6, |7 52?(?——1%’)1@%81)1)- Noting that ¢(t— 1) T¢(t—1) =,

(t—D)' ¢ (t—1)+¢,(t—1)" "¢, (t— 1), and combining with | <<c, we obtain

_ _ _ _ 2 _ —_
l6()—6,|?<<|6—1)—8,|*— r (t_fw (t_1)<(f§<z—1>—50 |7 1i. Taking

G G— DT — 1)

N _a 2
N*=(1++¢)X ”5(0)62 0o | , the property 3) is established.

When t>=N", it follows from (21) and (22) that s(2) y(t) —¢(t— 1T (t—1)<$
Vo1 (t— 1) T (¢—1). Using the property 1), and expanding the above inequation, we have
| y()—3(t—1)T0(c0) | <K& Vb — D ¢ t— 1) +wy { max | y(s) |V 4+ w. Noting that

t— pésﬁr

Vi G— DT — D= Eyu-—s)z +{ max | y() |} + 1< Zy(t—s)z + { max | y(s)| }?

s sSLt t— st

1<</n+1{ max !y(s)\ —H, property 2) follows. This completes the proof.

Suppose that G-, =27%%"1(a""')7! is the system model generated by the above esti-
mation algorithm at time ¢, and the input /output sequences are related by

a7 y(t) = Z 7 u(t) +e(t) (27)
where e(¢) =y(t) —¢(t—1)T0(zt—1).
Suppose the controller 1s given by
d'u(t) = n' (r— y) (@) (28)
Combining the parameter estimation and the ¢; optimal controller design gives the follow-
ing indirect adaptive law
1) Estimate a’,b° using algorithm (21)~(24)
2) Design the optimal controller a’,%° using the method given in Section 3. 2
3) Compute and implement control according to (28)
4) Back to 1).
4.2 Analysis of global stability and robust tracking performance of the adaptive system
Lemma 2. For the above adaptive law, if sequences{e(z)} and {¢(t—1)} satisty the
following conditions.

[s@y(2) _gb(t_ DTH(z—1) N

D lim™ s(t— DT p(t—1) =Y
2) There exist constants 0 < ¢; <loo, 0<c, < o0, such that H(,bu u“ < ¢, t+ ¢, max
S L
le(z) |
3) There exists constant 0< c;<1, such that @w,max| y(s) | <<c;max|e(s) |

<l st 0=l st

then, sequences {e(z)} and {¢(t—1)} are bounded.

Proof. If sequence {e(z)} 1s bounded, the condition 2) 1implies that sequence
{¢(t—1)} is bounded. Now assume that {e(?) } 1s unbounded. Then there exists a subse-
quence {e(#,)} such that lim le(2,) | =co, and |e(2) | << |e(t,) |as t<<t,. Since s(¢) y(t)—

gb(t—l)Tf?(t—l)—s(t)y(t)—5(t)96(t—*1)T8(t'—1)—wﬂ max |y(s)| — w!

eSS i
y()—t— DTG —1) | —w max | v(s) | —wh=le(t) | —wi mg}é 7 y(s) | — i, it fol-
lows from condition 3) that s(z) y(£) —¢(z—1)"' 0(t—1)>= le(2) | — c; néas:g{|e(s) | — !

Since sequence {e(t;) } is mono-increase, s(t;) y(£) —¢(z, —1)° 9 (t, — 1) =(1—¢y)
Le(ty) | —w% >=0. Also, from condition 2), it follows that

[s(t)y(tk)—¢(£k*1)T§(tk——1):|2>|:(1—63)|€(tk)[ w2 (A=) ]elw) |—w! T
¢)(tk = l)Tf,b(t;a — ].) [:Cl _|_Cg maX *3(7:') ‘ :IZ I:C] _l_Cg ‘E(Ik) ‘ :|2

Since sequence{e(t,) } 1s mono-increase and w) 1s bounded, we have
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i L@y =g = DTG =D [A—c)fe@)|—wi T 1—q
t, o oty — D (2, — 1D e ot |e(t) | )’ Cs
which contradicts condition 1). The lemma follows.
Theorem 3. Suppose the plant described by (1) satisties Assumption 4, and that the
adaptive system depicted by Fig. 2 satisfies robust stability condition that is represented as

, 1
Sl-rlP“Ga«s ”1 o

—, where G is transfer function from ¢ to » at time z. Then sequences
wWa

{e(t) },{u(z)} and {y(2)} are bounded. For a given reference input r that satisfies the
Assumption 3, the worst-case steady state tracking error satisfies:

limsup J'. < (w? + &)~ + —Ws £Vt Dp” 1y

oo 1 — (i +8 vn+1)u™

>0,

a —»ﬁ 2 (d) ! i——»”

Fig. 2 The adaptive control plant

where Ji. 1s the worst-case steady state tracking error at time ¢, and u' 1s the solution of

the corresponding /, optimal problem (14) at time ¢, that is, ' =1inf | Gle [ 4.
7€ A

Proof. First, we show the adaptive scheme i1s globally convergent, We first obtain a
closed-loop model for the adaptive system depicted by Fig. 2. For simplicity, denote a'*
by a and 26" ! by b,, so as to other time-varying polynomials. Define the following.

ab = > > at (Db (G2 (29)
aob= Y > (Db (G (30)
The closed-loop polynomial at time # is
a. = ad +bin (31)
(27) is rewritten as
e(t) = ay(t) — b u(t) (32)

Define p(¢) =a°nr(t) and 2(t) =b,°nr(¢). From eqns. (28), (31)~(32), it follows
that

p=acdu(t)+acenyt) =adu(t) +[a-d—adlu(t) +any) +[a-n—anly(t) =
adu (t) +bynu(t) +ne(t) +[a-d—adJu() +[a - a—anly() +
noby —ab Ju@®) —[Aea—ndly(t) = a,u(®) +7e(e) +[a-d—adJut) +
aen—an |y t+{neb, —ab, Ju(t) —[nea—ndaly(t) (33)
Using an argument similar to the one above, we have

2(2) =a,y(t) —ne(t) +[b, od—bd]ut) +[b, - n—bn]y(t) —

(d o by, —db, Ju(®) +[d-a—da]y(t) (34)
Combining (33) and (34), we obtain the following closed-loop model:
fa, +[a-d—ad]+[n-b, —nb,] laon—an|—|noa—mna] "'u(t)':
L [El “C?“EIC?]“[EZ“El‘&Bl] Ei* _I‘I:Z;]_“?a_z;lﬁ:+|:6?°&_3&:|.4_y(z>_n
" p(2) —ne ()
35
L2(2) +ne(t) (39)

(35) can be regarded as a linear time-varying dynamic system, where the terms in
square brackets arise from the time-varying nature of the parameters estimates, All these
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terms approach zero as ¢ tends to infinity.
Now, we use closed-loop model (35) to prove the global convergence of the adaptive

system. [t follows from property 1) of Lemma 1 that the coefficients of a' and & are
bounded for all z. Then the coefficients of d‘ and 7* are also bounded. Also, it follows

from property 3) of Lemma 1 that the coefficients of &' and & are close to asymptotical
time-invariety. From the continuity of Diophantine equation and the continuity of /;, opti-

mal design'® !, it follows that the coetficients of d’ and 7' are close to asymptotical time-
invariety. Then, all terms in square brackets of (35) approach zero as ¢t tends to infinity,
which implies that the closed-loop system (35) approach a robust stable system. Thus the

. . - c
condition 2) of Lemma 2 is satisfied. From sup H Gl | éal and G’ =G, , max L y(s) | <
¢ . . .
(sup|| G |1 Ymax | e(s) | <<—-max|e(s) |, the condition 3) of Lemma 2 is satisfied. It fol-
t 0T sS0t WA 05t

lows from 2) of Lemma 1 that 1) of Lemma 2 is satisfied. Thus we are able to apply Lem-
ma 2 to conclude that the sequences {e(z)} and {¢(t—1)} are bounded, and hence the a-
daptive system 1s globally convergent.

Finally, we establish the worst-case steady state tracking error. Since sequence
{$(t—1)} is bounded, it follows that {||¢,(t—1) |} is a bounded sequence, and hence
there exists a positive ¢ such that |¢,(z—1)|<lc. Thus, from the properties 4) and 5) of
Lemma 1, we can conclude that under Assumption 4 the real system can be represented by

inequality (19) with (g(co)T,w?+8 va+1,w”+8) as t2=N*. Then the theorem fol-

lows from Theorem 2. This completes the proof.
Remark 1. From Theorem 3, the unmodelled dynamics permitted by the adaptive sys-

1 . .. .
tem are 'L‘U‘_ﬂ<sup” AR According to the Small Gain Theorem, the maximal unmodelled
e il 1
. . . . 1 .
dynamics that the corresponding non-adaptive system can permit are W, << C. T, which
pé i1

implies that the adaptive system has the same robust stability as the non-adaptive control

system. On the other hand, in the adaptive system the controller 1s designed on the basis

of ¢, optimization at all time ¢, that is, sup] Gl |, is minimal. Hence, we conclude from
f

the above argument that the adaptive system proposed in this paper has non-conservative
and optimal robust stability, which greatly improves the results of [ 3~5].

Remark 2. The upper bound for the asymptotical worst-case steady state tracking er-
ror provided in Theorem 3 is tight. Its conservation depends on the precision of parameter
estimation, which further depends on the weighting § in (22).

S5 Conclusion

This paper investigates an adaptive robust tracking problem when a discrete-time
plant 1s subject to both unmodelled dynamics and unknown external disturbances. The
main contribution of this paper is as follows.

1) By combining of ¢, optimization and deadbeat control scheme, an optimal robust
steady state tracking scheme is provided. For the scheme, the robust tracking performance
optimization is shown to be equivalent to robust stability optimization, and both are re-
duced to a standard linear programming.

2) A recursive extended parameters estimation is provided based on the idea of set-
membership identification.

3) Using the certainty equivalence principle an adaptive robust tracking scheme is
presented. A tight bound on robust performance is provided, The adaptive scheme has
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non-conservative and optimally robust stability, and asymptotically optimal robust steady
state tracking performance.
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