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FBSDE with Poeisson Process and Its Application to Linear Quadratic
Stochastic Optimal Control Problem with Random Jumps”
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Abstract One kind of existence and uniqueness result of forward-backward stochastic differential
equations with Brownian motion and Poisson process is given. The result is applied to get the ex-
plicit form of the optimal control for linear quadratic stochastic optimal control problem with ran-
dom jumps. The optimal control can be proved to be unique. One kind of generalized Riccati equa-
tion system 1s introduced and its solvability is discussed. The linear feedback regulator for the opti-
mal control problem with random jump is given by the solution of the generalized Riccati equation
system
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1 Introduction

The backward stochastic differential equations with Poisson process (BSDEP in short)
were first discussed by Tang and Li‘", The stochastic process in the equation is discontin-
uous with random jump. After then Situ Rong'* obtained an existence and uniqueness re-
sult with non-Lipschitz coetficients for BSDEP, Fully coupled torward-backward stochastic
ditferential equations with Brownian motion can be encountered in the optimization prob-
lem when applying stochastic maximum principle and in mathematics finance when consid-
ering large investor in security market. Under some monotone assumptions, Wu"* obtained
the existence and uniqueness of the solution to forward-backward stochastic differential e-
quations with Brownian motion and Poisson process (FBSDEP in short) in an arbitrarily
fixed time duration. In next section, we will give another existence and uniqueness result
ot FBSDEP under some monotone assumptions suitable for our optimal control problems,
The result can be used to study the linear quadratic optimal control problems with random
jump in the following section.

Stochastic linear quadratic optimal control problems have been first studied by Won-
ham'*"* and then developed by Bensoussan'®, Davist”, Peng'®, Zhong"', Chen, Li and
Zhou''', Yong and Zhou''"!. The optimal control problem with random jump was first
considered by Boel and Varaiya-'* and by Rishel"**! also. In this case the control system is
disturbed by random jump and the optimal solution is a discontinucus stochastic process.
This kind of optimal control problem has a practical background in engineering and finan-
cial market. In the general frame 1. e., the noise source is the general square integrable
martingale, Bismut''*! studied this kind of problem systematically. He proved the exist-
ence and uniqueness of the optimal control using the functional analysis method. He also
introduced the adjoint linear backward stochastic differential equation using the dual meth-
od and discussed the solvability of one kind of Riccati equation. And then he got the teed-
back form of the optimal control. In Section 3, using the solution of FBSDEP discussed in
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Section 2, we can give the explicit form of the optimal control for stochastic linear quadrat-
ic problem with random jump, and we also can prove the optimal control 1s unique using
the classical method. It is natural to study the associated Riccati equation for this kind of
optimal control problem. We introduce a kind of generalized Riccati equation system
formed by one matrix-value ordinary differential equation and two algebra equations which
has three matrix-value variables. The equation form is different with that in (10,14 ]. The
similar equation form for two matrix-value variables can be seen in Peng'®!, Using the so-
lution of this kind of Riccati equation system, we can give the linear feedback regulator of
the linear quadratic optimal control problem with random jump.

The above kind of generalized Riccati equation system is novel and complicated. In

Section 4, we will discuss its solvability and give a simple example of this kind of equation
which has a unique solution.

2 Existence and uniqueness of FBSDEP
We consider the following kind of FBSDEP

fd.:t:t — b(t,x, EBPI ,qu 5Dk;)dt-l_a(taxth pHth 9Dk¢)dBt +

ng(tﬁ o Ly 9Bpt_ !CQI_ 9Dkt_ (z))ﬁ(dzdt) — dP: —
< (1)
f(t!xt !pt ﬁqt&kt)dt"“— qtdBr —_— [ kt_ (Z)N(dzds)

Z

Lo — Ay PT = @(IT)
For notational simplification, we assume Brownian motion is one dimensional and we use

the notations in { 3]. Here (x,p,q,k) take value in R*XR*XR*"XR", B, C and D are
k X n bounded matrices, We introduce the notations

T . f

T P , A(t,u) = b (tyu)
q ]
Lk . . g

and assume that

(At u) —AG ) u—u) <<—uv,| 2 |*—v,| B6 +C4+ Dk |?
WD () —D (D) yz—T) >0, (2)

—

Ya= (u—u) = (2,p,q:k) = (x—Zp— psg—q.k—Fk)
where v; =0, v, >0. We also assume that

‘1) A(t,u) 1s uniformly Lipschitz with respect to u;

i) @ (x) 1s umiformly Lipschitz with respect to £ € IR*;

i) for each x, @ (x) is in L*(Q,Fr,P) .

2iv) (w,t,0,0,0,0) € M*(0,T), Il = b,6, f, respectively, (3)
and g(w,t,0,0,0,0) € F40,T) for (w,t) € QX {0,T];

v) Yz, | (t,x,Bp,Cq,Dk) —I(t,x,Bp,Cq.Dk) | < K(| Bp+Cq+ Dk |),
X K>09Z:bad!g.
So we have |
Theorem 1. Under the assumption (2) and (3), FBSDEP (1) has a unique adapted so-
lution (x( * ), p( ¢ ),q(* ), k(*))EM (0, T;R*™ ) X F4(0,T;R").
The proof is similar to that of Theorem 3.1 in [3].

3 Linear quadratic stochastic optimal control problem with random jump
We consider the following linear stochastic control system with random jump
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.

fdz, = (Az,+ Bv)dt + (Cz, + Do,)dB, —I—L(Ext + Fo,)N(dedp),

(4)

T, = a

where A, C and E are n X n bounded matrices, v,, t € {0, T ], is an admissible control
process 1. e., an F,-adapted square-integrable process taking values in a given subset U of
IR*. B, D and F are n Xk bounded matrices. We also assume that there is no constraint
imposed on the control processes; U=IR*, A classical quadratic optimal control problem is
to minimize the cost function

- (T
J(v(e )) = —%—]E L ((Rx,,z,> + {Nv,,v,))dt + {Qrr.x7) (5)

over the set of admissible controls, where Q and R are nXn nonnegative symmetric bound-
ed matrices, N is a 2 X kb positive symmetric bounded matrix and the inverse N7 is also
bounded. In this section we will prove and give the explicit form of the optimal control u-
sing the solution of FBSDEP. By the solution of one kind of generalized matrix Riccati e-
quation system, we also can give the optimal linear feedback regulator for the above linear
quadratic optimal problem with random jump. We first have the following results.
Theorem 2. The function u,= — N7 ' (B*p,+ D°q,+F%,), t&€[0,T], is the unique
optimal control for the linear quadratic control problem with random jump, where (z,, p,,
q:sk.) 1s the solution of the following FBSDEP.
‘dx, = |Axz, — BN 'B*p, — BN 'D'q, — BN'F°k, |dt +
 Cx,— DN 'Bp, — DN 'D*q, — DN F*k, |dB, +

2 J (Ex, — FN 'Bp, — FN 'D4g, — EN'F2, )N (dzdzs)
Z

(6)
—dp, = [A*p, + C'q, + Ek, 4+ Rz, Jdt — ¢,dB, — Lkr (2) N(dzdt)

o = as pr = Qlw)xy

Proof. It is easy to verily that (6) satisfies (2) and (3). So from Theorem 1, FBS-
DEP (6) has unique solution (x,s p,sq.sk.). We denote for V v( « )ER*, x} is the corre-
sponding trajectory of system (4), then we have

"T
J(w(e)) — J(u(e)) = éIEIZ 0(<Rr;"’,x§’>—<Rru.:r:z>—|—<Nv¢m;>—<Nu”ut>)dt—|—

T
Qs xs) — (Qrprzs)] = ;E[j (R(x? — 2) 52" — 2. + (NCv, — ) 0, — ) +
2<R1:,+, 5-17? _333> _|_2<NM;9‘U; —"u;>)df“|‘ <Q(I¥‘ _—IT) 9.1'31‘} _IT> + 2<QSCT 9-.’131‘1;‘ “"‘IT>:|

From Qx;=pr, we use [td6's formula for (% —x1, 1), since R , Q are nonnegative, and
N is positive, we have

J(o(e)) — J(u(s)) > ]EL ((— NN~ (Bp, + Dq, +Fk,) s v, —u,) +

(B p,»v, —u,> +<{(Dq,»v, —u,) +{Fk,yuv,—u>)dt = 0

So u,=—N"'(Bp,+Dq,+F%,) is the optimal control.

To prove the uniqueness of the optimal control, we use the classical parallelogram
rule which can be seen in [ 6 | for the case without jump. We omit it.

Now we introduce the following generalized n X n marix Riccati equation system ot
(Y(),M(),L(t)), t&[0,T],
—Y(@) =AYWD+YWDA+CMG) +EL() —Y@BNT'BY(t) —
Y(t)BNT'D'M@G) —Y(OOBNT'F'L(t) +R
<M =Y@C—Y@WDN'BY(®) —Y@DN'DM() —Y(DNFLG& (7)
L) =YWE—-Y@WFEN'BY&) —Y@WFN'D'M() —Y()FNT F°L(t)
Y(T) =Q,t € [0,T]
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The above equation system 1s complex, it is one kind of generalized matrix — value
Riccati equation system. We will discuss its solvability in next section. Now we have

Theorem 3. Suppose that there exist matrices (Y (), M(),L(¢)), t&[0,T |, satisfy-
ing the generalized matrix Riccati equation system (7); then the optimal linear feedback
regulator for linear quadratic optimal problem with random jump is 4, = — N7'[ B°Y (¢) +

DM (t)+F°L(t) lx,, and the optimal value function is J(u( * )) = é (Y(Da,a’.

Proof. Let (Y(2), M(2),L(t)) be the solution of (7). It is easy to show that the so-
lution (x,sp,+q, s k,.) of (6) satisfies p,=Y () x,, ¢.=M)x,, k,=L(t)x,. So the optimal
control is u,=— N [BY(t)+D'MQ)+FL(G&)])x,, t€[0,T]. Applying Ité's formula to
(x1y pry In J(u(+*)), we easily get J(u( +)).

4 Solvability of the generalized Riccati equation

In Section 3, the linear optimal feedback regulator for the linear quadratic optimal
problem with random jump can be obtained by the solution of the generalized Riccati equa-
tion (7). However, (7) is so complicated that we can not prove the existence and unique-
ness for the general case at this moment. In this section, we discuss the solvability for a
special case of (7) when D=0, Now we study the following equations
—Y(@) = AYQR) +F YDA+ EU, +YWFN'F)Y " (YWWE—-Y()FNBY(®)) —
Y(OBN'BY®) +CYWCH+R—YWBN'F (I, +Y)EN'F )™ X
YWOE+Y(WOBNT''F (I, +Y(WO)FN T F)T'Y(O)FNT'BY ()
YD) =Q, I, +YWFN''F*>0,t€ [0,T]

(8)
If we get the solution Y (¢) for (8), then we can let

M) =YW@W)C, LW =U,+Y@WOFN''F) )Y (YWOE—-Y)FN'BY(2))

to get the solution of (7) when D=0.

At first, applying the Gronwall's inequality we have the following uniqueness result.

Theorem 4. Riccati equation (8) has at most one solution Y( ¢ )& (C(0,T;5% ). Here
S* represents the space of all n X n nonnegative definite symmetric matrices., Now let us
discuss the existence of (8) step by step. If we let K(t)=F(Y)=(I,+YFN'F)7'Y,
then for any K( « )& C(0,T;S5% ), the following conventional Riccati equations
(—~ YY) = (A—BN'FKME)Y®) +Y@W(A—BN'FFKME) +
< CYWCH+EKME+R—YW)[BN'B*—BN'FK()FN'B* Y (1) (9)
Y(T)=Q, t€[0,T]
has a unique solution Y( » )€ C(0,T;S% ) when

| BN7'B*—BN7'FFK(t)FN'B* | € C(0,T;5%) (10)

We denote by S? the subspace of S% formed by the symmetric matrices satisfying (10).
Obviously, K=0& S?, so this detfinition is reasonable. Thus we can define a mapping ¥
C0,T; SH)—=>C(0,T; 5% ) as Y=V (K), and have

Lemma 5. The operator F(Y) 1s monotonously increasing when Y >0; The operator
¥ 1s monotonously increasing and continuous.

Proof. We notice , when Y>>0,

FCY) =, +YFN'F)'Y = [Y'U,+YFN'F) 7' =(('+FN'F)™

So, i1 Y, =Y,, then F(Y,)=F(Y,).

Let Y=%(K) and Y="(K), and denote K=K—K. We rewrite (9) as
 — YY) =AY +YWDA—-Y@WBN'B'Y(t) + R+CY\)C+
< (E—FN'BY(W))K@E—FN'BY(®))
Y(T)=Q, t€][0,T].

From the first conclusion in this Lemma and Lemma 8.2 in [ 151, we know that if K>K,
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then Y==Y. This proves the monotonicity of ¥, On the other hand, applying Gronwall in-
equality, we easily see that if K=K, Y—Y=Y—0. This yields the continuity of ¥ and the
prootf 1s completed.
Looking back at (9), it i1s easy to know that
Thoerem 6. If there exists K& C(0,T; S") such that

K= ,+v(EK)FN'F)"'"¥w(K) (11)
then Riccati Equations (§8) has a unique solution.
The following task is to find the suitable K& C(0, T;S5?) satistying (11). We need
the following result.
Lemma 7. If there exist K", K~ €C(0,T; S*) which satisfy
K>, +¥ (KDFN'F) ' (KDY >{, 4+ (K )FN'FO)7'"¢w (K) > K™ (12)
then (8) admits a solution.
Proof. Let K and K~ be given and satisfy (12), We define the sequence K; , K[,
Y, Y as following:
K. =Kre S, K, =K eS8, Y,'=wK!), Y, =¥K,),
K, = (U, +Y{FEFN'FO 'Y, Ki = U, +Y, FN'F)'Y7
Y, =P(Kin)sy Y =W(EKL), 1=0,1,2,,s
From (12) and Lemma 5, by induction, we obtain
Yo =Y =2YL =Yy =Y =Y, =0
Ki > K > K =Kihn 2K > K;j >0
and K7, K7 €8". So we have
limKT =K"'€ S§*, IlmY; =Y " &€ §S2

YY" =limY! = limW(K;) = ¥{imK) = ¥(K")

and Y" is a solution of Riccati Equations (9) corresponding to K=K*. Then K™ =(I,+

YT"FN'F)7'Y"., By Theorem 6, Y is one solution of (8). By the same step, we also
can get Y~ =IlimY; and K~ =1limK; , so Y 1is also a solution ot (8). By the uniqueness

result Theorem 4, Y =Y .
We only need to find K™ and K~ satisfying (12). The existence of K~ is obvious. We

can let K~ =0, which by the conventional Riccati equation theory, satisfies (12). To find

K" &€ 8" satisfying (12) and ensure the existence of (8), we assume that

‘There exists K € 8§, such that

FFKF=Nand ([, +YFN'F)'Y<K,

here Y is the unique solution of the following equation

—Y(#) = (A—BNT'FKWE)Y () +Y(1)(A— BN FK(DE)
CY() C+EK@E+R

Y(T) = Q

It is easy to know that when 2#=n and matrix F is invertible, the assumption (13) 1s satis-

fied. Hence, we have the main result of this section.

Theorem 8. We assume (13) and D=0, the generalized Riccati Equations (7) has a u-
nique solution (Y ,M,L)&e C' (0, T;S ) XL, T;R"") XL"(0,T;IR"™).

At last, we can give a simple example of the generalized Ricecati equation which has a
unique solution.

Example 9. We assume the dimensions of the state and control in control system (4)
are the same 1. e., 2=n, and assume D=0, F=1I,. Now we can let K= N and then check
(13). K=N>0, so KF+YFN 'F'KF>YF, and Y is the solution of the equation in
(13). K+ YFN 'FK>Y, K=>(I.+ YFN"'F)7'Y. So from Theorem 8, the Riccati E-

quations (7), when k=n, D=0, F=1,, has a unique solution.

2 (13)
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