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Abstract This paper presents Ho, output feedback control design of complex nonlinear
systems which can be represented by a fuzzy dynamic model. Based on a common
Lyapunov function and a piecewise differentiable Lyapunov function respectively, two
kinds of new H,, output feedback fuzzy control design methods are developed. The H,
output feedback controller can be obtained by solving a set of suitable linear matrix

inequalities. An example is given to demonstrate the application of the proposed design
methods.
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1 Introduction

Fuzzy logic control (FLC) based on the conception of fuzzy sets proposed in [1] has been an
appealing control approach!2~%!. During the last few years, a number of new methods have been
proposed for the systematic analysis and design of fuzzy logic controllers based on the so-called
fuzzy dynamic model, which consists of a family of local linear models smoothly connected
through fuzzy membership functions!”~19]

H.. control has been an attractive research topic during the last decade!?°~22. So far
a couple of papers!'®1% have discussed the H,, feedback control for fuzzy dynamic systems.
However, those papers dealt with a state feedback control design that requires all states of
systems to be measured. In many cases, this requirement is too restrictive. Therefore, an
H., output feedback control design for fuzzy dynamic systems is warranted. It should be
noted that the state feedback control design methods can not be easily modified for the output
feedback control design for fuzzy dynamic systems. Recently, there appeared a few results of
output feedback control design for fuzzy dynamic systems!'”1%. However the result in [17] is
not constructive, many trials might be needed before an acceptable controller is found; the
other discusses H, output feedback control design!!®!. In this paper, we will develop two new
constructive H., output feedback control design methods for fuzzy dynamic systems by using
LMI technique!23/.

The rest of this paper is organized as follows. Section 2 introduces the fuzzy dynamic
model. Based on a common Lyapunov function and a piecewise differentiable Lyapunov func-
tion, Section 3 and Section 4 present two new H,, output feedback control design methods
respectively. An example is given in Section 5. Finally, Section 6 concludes with some remarks.

Notation. The notation used is fairly standard. We denote by z'z or ||2||* the square
norm of a vector z € R*. The notation Ly(0,T) will also be used for vector-valued functions,

i.e. we say that z : (0,T) — R¥ is in Ly(0,T) if [, ||z(t)]|?dt < oo.
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2 Fuzzy Dynamic Model

For a nonlinear system, it is difficult, if not impossible, to design a satisfactory control in
general. However, it is known that many nonlinear systems can be expressed as a set of linear
systems in local operating regions. Therefore, in this paper, we will consider the following class
of nonlinear systems, which can be represented by the socalled fuzzy dynamic model, that is,

R': IF g1 is F! and - -- g, is F"
THEN x(t) = Ajx(t) + Bju(t) + Byiw(t), (1)

y(t) = Ciz(t),
(t)'_ zlm() [=1,2,---m,

where x(t) € R™ are the state variables, u(t) € R is the input variable, y(t) € R is the output
variable, and w(t) € R is the disturbance variable which is deterministic signal that belong
to L2(0,00), 2(t) € RY are the controlled output variables, R’ denotes the [-th approximation
inference rule, m is the number of approximation inference rules, F ; (j = 1,2---38) are fuzzy
sets, (Ay, By, By, Ci, C,1) represents the I-th local model of the nonlinear system, and ¢(t) :=
[q1, 92, - -, gs] are some measurable system variables.

By using the fuzzy inference methods described in {7 ~ 19|, that is using a center-average

defuzzifer, product inference and singleton fuzzifier, the dynamic fuzzy model (1) can be ex-
pressed by the following global model

z(t) = A(p(t))z(t) + B(p(t))u(t) + By (u(t))w(t),
y(t) = C(u(t))x(1), (2)
z(t) = C.(n(t))z(t),

A(p(t)) = ZNIAI-,- B(uft)) = ZmBz, By (k(t)) = ) mBui,
=1

Clu(t)) = Z mCr, C.(p(t)) Z i C,

=1

“(Q(t)) = p.(t) — [pl(t)! /-1'2( )a Tt :ﬂm( )]:

where p;(g(¢)) is the normalized membership function of the inferred fuzzy set F' where

F' :HFiI (3a)

and
Z Hl =— 1. (3b)

Define M as a set of membership functions satisfying (3).

This paper focuses on the H,, output feedback control design for fuzzy dynamic systems.
The H,, performance is defined as follows.

Definition 1. Given a constant v > 0, a closed loop system is stable with the H.
performance bound « if the following conditions are satisfied:
1) the closed loop system is asymptotically stable,
2) with zero initial condition, the controlled output satisfies ||z|| < ~ljw]|.
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3 H, Output Feedback Control Design based on a Common Lyapunov Function
We will present one method based on a common Lyapunov function in this section. For
the fuzzy system (2), a smooth output feedback controller can be chosen as follows

. = Z I-LlAclmc(t) + Z MIBcly(t):
=i = (4
u = Z #[chwﬂ(t).
[=1

With the output feedback controller (4), the closed loop fuzzy control system can be
described as

)
£), (5)

For the closed loop system (5), a common Lyapunov function is considered
V =&' Pz, (6)

where P is a (n + k) X (n + k) fixed symmetric positive-definite matrix. n is the number of
states of the plant, and & is the order of the controller.

Recently it is shown that the output feedback control problem can be changed into an
LMI problem!?3!. Here we will follows the idea to solve our H,, output feedback fuzzy control
problem. For using LMI techniques, partition the common Lyapunov function P and P! as

[y N L [ x M
O N s ©

. X
where X and Y have dimensions n xn and are symmetric. From PP~! = I, we infer P { MT } =

1
0

which leads to

(8)

1 _.
Pﬂlzﬂgwithﬂlz[x ! ! Y].

MT ol 2=

- L)

Then we have the main result in this section.
Theorem 1. Given a fuzzy dynamic system described as in (2), an output fee_dba._ck f_uzzy
controller described as in (4) and a constant v > 0, if there exists a set of variables A;;, B;, C;, X

and Y satisfying the following inequalities,

Qi1 Ly Bwt  (CuX)?!
Qrio1 Sige Y By cl
Bl, BlY —~+°I 0

C,X C, 0 —I

< 0, (9)
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X I
I Y

> 0, (10)

L

where

Qlill — AIX + XA'[I‘ + BIC"E. + (Bl(ji)T} QliZl — AH + AI,T:
QH22 — A;I‘Y + Y A+ Bicl + (BzCI)Ta "’11 — 13 2--m,

then the closed loop system (5) is asymptotically stable with H,, performance bound 7.
Moreover, determining M, N by

MN' =1 - XY, (11)
the parameters of the H, output feedback controller are given by
Cau=CMY By=N"1B;,Ay =N"1YA4,;, - NBuC;X - YB,CuM" - YAX|M". (12)
Proof. Firstly, it will be shown that (9) implies the following inequality
AT(n)P + PA(p) + v *PB(u)B" (u)P + CT (1)C(m) < 0. (13)
Since

AT (p)P + PA(p) + v~ *PB(p)BT (p)P + CT (n)C(p) =

m m m T m m m
D mA Y wB ) piCe [ > mA > mB ) piCe
=1 =1 1=1 I=1 1=1

p+pPy| . =t

Y piBei ¥ mC Y piAe [Z iBei Y mCi > piAe
=1 =1 ' 1==1

1=1 1=1 =1
m m T _IT
-9 NIBwi I-LIBWI — —
v P ; ; P + Zﬂzczz O [chﬂ Of, (14)
0 0 =1 _ =1

1t 1s easy to see that if the following set of inequalities is satisfied, then (13) is established,

1 T r

A BiCg A, B,C.; o [By 1 [Bul® .
[Bcicl Aci ] PP _Bm‘,C; Aci ] T P [ 0 0 P+ [Czl 0] [Czl O] < 0,

l:i=1:2&'”1m1 (15)

where the membership function property (3b) has been used.
Using Schur complement, (15) is equivalent to

BIP -2 0 [ <0, l,i=1,2---m, (16)
Ci 0 —1I
where ] i
A AI Blcci > Bw! =
Al = | BaiCr Ag | B = [ 0 ]  Gi=[Ca 0]

Multiplying diag [II; I I] on both sides of (16), we have

el—

sz 5_2}1;21 B (szX)T-l

HF(AEP-{-PAH)H;[ HFPB; HlTélT OVini  oe Y B, OT
3 1 w 21

BFPIT, —y2T 0 2SN ; <0, (17)

CZIX Cz:.’. 0 = | i
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where

Qi1 = AlX + XA + BIC;M™T + [BiIC; MT]T,
Quio1 = NAGMY + NB,;,C, X + YBIC,MT + YA X + AT,
Quisa = A'Y + YA + NB,,C, + [NB,,C)|T.

Now we can define the change formula of the output feedback controller variables for fuzzy
dynamic systems,

Ay = NAGM* + NB;,C\ X +YBICuM* + YA X,B; = NB,;,C; = C.; MT.  (18)

Then substituting the variable change formula (18) into (17), we obtain (9).
Furthermore, multiply Il on both sides of P > 0, that is,

X T

II'PII, = Iy

> 0,

A

the condition (10) is equivalent to P > 0. Then, it follows from (13) that the closed loop fuzzy
control system is asymptotically stable, since (13) implies AT (u)P + PA(u) < 0.

Now let us prove that the closed loop fuzzy control system satisfies the H., performance.
Differentiating the Lyapunov function (6),

- d d - . . .
Vi(t) = (afe“’) Pz +a&'P (a—tfi’:) =& ATPz +2TPA% + 2" PBw + wTBP%.

Integrating the above function,
V(o0) — V(0) = fo m[:i’:T(ﬁTP + PA)& + wTBT Pz + #T PBwa]dt <
fo m[:‘i:T(-—-fy_zPEETP - CTC)2 + wTBTPz + T PBwa|dt =
[m —z'z+ywlw — (wl =y 28T PB)y?(w — v 2BTP&)]dt <
/ 2"z + y2w T w|dt

where (13) has been used.

Therefore, with zero initial condition, it follows that the stable global closed loop system
(5) satisfies the H, performance, that is, ||z|| < v||w]|- O

In hight of the above theorem, the following procedure to evaluate an H,, output feedback
control law 1s developed.

Algorithm 1 of the H_ fuzzy output feedback control design:

Step 1. Choose an H, performance bound v > 0.

Step 2. Use the LMI toolbox in Matlab to solve the inequalities (9) and (10). If the solutions
to Aj;, B;,C;, X and Y,l,i =1,2---m, are found, then determine M, N to satisfy (11),
and an output feedback controller can be obtained by (12), and stop. Otherwise declare
that the proposed algorithm fails.

It is noted that the above H., output feedback fuzzy control design is based on the as-
sumption that there exists a common Lyapunov function for fuzzy dynamic systems. In many
cases, it is very hard to find such a common Lyapunov function for fuzzy dynamic systems or
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such a Lyaponov function does not exist at all. In these cases, the above fuzzy control design
method can not be applied. Thus a new H,, output feedback fuzzy control design method will
be presented in next section.

4 H_, Output Feedback Control Design based on a Piecewise Differential Lyapunov
Function
We will develop a new H., output feedback fuzzy control design method based on a
piecewise differential Lyapunov function. For the control design purpose, we decompose the
state space into m independent regions which are defined as follows

={qlm(a) 2 1i(qg) i=1,2,--,mj#l} VpeMli=12--,m. (19)
The boundary of D; is denoted by
0D; = {qlm(q) = pi(q), DinD; #0, 3=1,2,---,m,j #1},Vue M,1 =1,2,---,m. (20)
Then, on every region D; the fuzzy system (2) can be expressed by

#(t) = (Ar+ AAL()2(t) + (Br + ABy(p))ult) + (Bug + ABut(p))w(?),
y(t) = (C; + AC(n))x(t), (21)
z(t) — (Czt + Aozl( ))m(t)a

where
AA(p Z widAy, ABl(p)= Y widBu, ABuw(p)= Y uiABu,
i=1,i#1 z"—li;ﬂ i=1,iA1
AC) (4 Z pibCri,  ACy(p) = Z wibCui, AAL = A; — A
t=1,15£l] 1,251

ABH — B‘L — Bh ABwli — sz’ - Bw!: ACH. — Ci T CE: AC::H — Czi — Cz!a
vp‘e M, Q(t) e Dy, = 112:“':m

Here the {-th local system is different from the fuzzy dynamic local model in (2) because it
considers all interactions among the local models. We assume that if the system is in the I-th
sate region. 1t will stay there for a period of time ¢ where t = 7, — 75,¢ = 1,2,---,T.7; is
the 7-th time instant at which the ¢(t) is on a boundary 8D;.T is the total number of transits
among regions.

Consider a piecewise continuous output feedback controller below,

K : { T = Aaxc(t) + Bay(t),

U = char:c(t). q(t) = Df’t 7& Tiﬂl — 112: T, . (22)

With the output feedback controller (22), on every region D; the closed loop fuzzy control
system can be described as

2(t) = Ai(u)&(t) + Bi(p)w(t) = (A + AA())&(t) + (B + AB(p))w(t), (23)
z(t) = Ci(p)a(t) = (Cu + AC.(n))&(2),

where

A 4; B,C, AA;, ABC.,]| - [ B, | A AB

A = — c — wl _ wl
" BaC Ad ] Adi(n) [Bdacz o |7 o |» Abim )“[ 0 ]
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We assume that the state &(t) € R™"* does not jump at the time instant 7;, that is,

(r. )=z(n)=a(r;"), i=12,---,T. (24)

1 1

Consider the following piecewise differentiable Lyapunov function

V(ty=a ' P(t)z, P(t)=PF, qt)eD,t#m, (25)
P(r; )= P, q(r; )€ oD, P(T?L) = P;, q('rf) eD;,, DiND,;#0,t=1;, (26)

1

jal: 1321'”7m:j ?él,‘t: 1323'“:T&

where (P, P, -+, P,,) is a set of (n + k) x (n + k) fixed symmetric positive-definite matrices
and P(t) is a symmetric positive-definite piecewise differentiable matrix function. The following
notations are used for P(t).

The left limit of P(t) at t € R is defined as P(t7) = lin%} P(t — €) if the limit exists; and
£E—
the right limit of P(t) at t € R is defined as P(t1) = lin% P(t + ¢) if the limit exists. Then we
e

refer to a lemma from [10] about stabilization of fuzzy dynamic control systems.
Lemma 1. The closed loop fuzzy system is globally asymptotically stable with H., per-
formance bound ~, if there exist a controller and a positive-definite symmetric matrix function

P(t) such that

AT (R)P(t) + P(t)Au(p) +77*P(t) Bi(m) B (0)P(t) + C' (1)Ci(m) <0, (27)

P(r"Y< P(r;), i=1,2,---,T, Ypu € M and t € [0,00). (28)

For the control design purpose, the following upper bounds for the uncertainties of the
fuzzy local systems (21) are defined, which can be found as in |7,9]

AA) (n)AAi(p) < B Et, AByiABy < EpuiEpy, AC;(#)AC(B) < Eg,Eca,  (29)

where

AA;([J) — [AA;,AB;],EI = [EAg EBI]: [ = 1,2, cer, TN

For using LMI techniques, partition the piecewise differentiable Lyapunov function P; and

F",’_1 as
Y N 1 | X M; | —
H“[NIT *]1}31 —[MIT *Jﬁ l—laza 1m: (30)
where X; and Y; have dimensions n X n and are symmetric. From HPfl = I, we infer
X | [T .
P { MIT] = -0] which leads to
. | X; I I Y,
PIHH:HH with Hll — I_Mfr 0] ’ HEL’: [0 N;T_! y l:]-&za"':m' (31)

Here we refer to a lemma in [24] for the later use.

Lemma 2. For any constant € > 0 and any matrices X and Y with appropriate dimen-
sions, we have XTY +YTX < eXTX 4+ 1YY,

Then we have the following resuit in this section.

Theorem 2. Given a fuzzy dynamic system described as in (21), an output feedback
controller described as in (22), the approximate upper bounds as in (29) and a constant v > 0.
if there exist a set of constants £; > 0, and a set of variables A;, B, Ci, Ep, Ei,Ep, X; and Y,
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satisfying the following inequalities,

Qi Qo1 X I Q% Ey Bt Epwi (CaX)T (EcaXi)"
(21 2z I Y, E%Y (MEa)'  YiBu YiEBwi C} ES.
X I —e'En —'X; O 0 0 0 0 0
I Y: —e ' Xy - '] 0 0 0 0 0 0
9351 EA,; O 0 —-E:;I —E,;YE 0 O 0 0
Em Y.-P,EAJ, 0 U --E,'zY} —E;E,{Q 0 0 0 0
B!, Bl.Y, 0 0 0 0 —27142] 0 0 0
Egwi EguwY 0 0 0 0 0 e | 0 0
C.aX C. 0 0 0 0 0 0 —271r 0
Ecoa1 X Ecoa 0 0 0 0 0 0 0 Y |
<0, (32)
X I (33)
R R

and the boundary condition

P(rt)< P(7]7), i=12,---,T, (34)
where

Q1 = A X + X AT + BiICy + (BIC)T,  Quay = 4 + AT,
9222 — A;I‘Y} + leAl + BICI -+ (BgC{)T, 9151 — EAle + EBJC’J, [ = 11 2} rer, TN,

then the closed loop system (23) is asymptotically stable with H,, performance bound . And
determining M;, N; by
M/N;" =1 - XY, (35)

the parameters of the H,, output feedback controller are given by
Coo=CiM; "By = N7'B;,Aq = N[' [A; — Ny\ByCi X; — ViBiCaM® — Y, AiX,| M ", (36)
Proof. Firstly, it will be shown that (32) implies the inequality (27) in Lemma 1.

Al (W)P(t) + P(t) Ai(u) + ’Y”L’P(t)Bz(u)B (1) P(t) + CH()Ci(pn) = (A] + AAT) P+
Pi(A; + AA;) + v 2Pi(Buwt + ABuwi) - (But + ABu)TP + (G + AC)T(Cr + AC) <
Al P+ P A + e, PP+ ' AAT AA; + 2y 2P B B P+
29 2P AB,ABY, P, + 2CFC, + 2ACTAC, =
AT P + PA + e,PP, + 2y 2PB, BT, P, + 2CFC; + 2[AC,, 0]T[AC, 0]+

a1 [1 01 [a4, AB]1'[1 o 1[I o017AA4 ABI[I 0],
L0 Co 0 0 |0 By} |0 Ba|| O 0 | |0 Cgq

r T
27—2}31 lAgwl] [Agwl] PI

A?PJ‘I’HA!‘FEIBF}+27“2HBwlepPI+ZCFCZ+2[E0zl 01" [Ec. 0]+
] 1[1 01" [E,“ Em] (I 0 ‘T[z 0 ] [EA; EB;} [1 0 }Jr
[

0 Cqj [0 0] |0 Byl |0 Bygj{l 0o o0 |l0o Cg4
r T
_ Epuwt | | EBw
2y 2P;[ *g ‘] *g ‘] P, (37)
L

where the lemma 2 has been used.
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Thus if the right hand side of (37) is less than zero,we can Show (27). Using Schur
complement, the right hand side of (37) being less than zero is equivalent to

A?H+Rﬁl P ZE; Pléwl P 2w C'IET Zgl

P, i . 0 0 0 0
Zar 0 —el O 0 0 0
Bl P, 0 0 —-2714°T 0 0 0 < 0, (38)
Y. Pl 0 O 0 -2 0 0
C 0 0 0 0 -2 0
2o 0 0 0 0 0 —2_11_
where i _
Ex EgC. EBuw
Al = 64 l B(l) t , 2Bwl = 'g I , Zoi=|[Eca 0.

Multiplying diag[ll;; I}y I, I I I I]on both sides of (38), we have

Q11 Qo1 X I Qis: g By Epuwi  (CaXi))' (BcaXi)'
Q21 Q2o ! Y Ey Qe Yi B YiEBuwr C,, ES..
X I Quas -, X; O 0 0 0 0 0
I i  —e'Xi - 'I O 0 0 0 0 0
Q;51 EAg, 0 0 —EzI,: —E.';Yj 0 0 0 0
Qe Qo2 O 0 —&Yr Qe 0 O 0 0
BT, BlY; 0 0 0 0 —2714%f 0 0 0
Et., FEz.Y 0 0 0 0 0 . | 0 0
C. X Ct 0 0 0 0 0 0 S | 0
Ec. X, Ec. 0 0 0 0 0 0 0 —271
< 0, (39)
where

U1 = AiXy + X AT + BICaMT + [BICa M|, Qugp = ATY + YAy + NiBoCi + [N\BoCi)
Qo1 = NJAGME + NiBaCi X, + ViBiICaM + YA X, + AT, Quzs = —e; (XX + MiM;),
Us1 = Eal Xy + Egi(CaMY), Quer = VIEgiCaM; + Y Ea X,

Quez = YiE a1, $ues = —1(Y1Y: + NN,

Now we can define the change formula of the output feedback controller variables for fuzzy
dynamic systems,

A; = NJAGMT + NiB,Ci X + YViBiCuM;' + V1A, Xy, B, = NiBy,C) = CuM;,
Eio = YEgiCaM + YiEauX1, Ey = X)X+ MM E, =YY, + N|N;. (40)

Then substituting the variable change formula (40) into (39), we obtain (32). Furthermore,
multiply II;; on both sides of P, > 0, that 1s,

X; 1
HI.}‘HHH = [ II }/1} > 0:

the condition (33) is equivalent to P; > O.
Then it follows from Lemma 1 that the closed loop fuzzy control system is asymptotically

stable.
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Now let us show H,, performance. Differentiating #' Pz and then integrating form 7‘1-"' to
7,21 We have

Tit1 / d i

f T 1ET(ATP + PA)E + w BT Pz + #T PBiwa]dt <

f "NET(—A2PBBTP — CT 0% + wT BT P& + 2T PBiwi]dt =

_|_

3

fﬁl[ 2Tz + Y2wTw — (wT — v 22T PB))y?(w — ~"2Bf Px))dt,

where the proved condition (27) has been used. Thus we obtain
&' P(co) — &' P(0)& <
/ 2T +72wTw — (wT — 7 2&" PB(t))y*(w — 'y_ZBT(t)P:i:)- dt+
0o _

T
D _[#"P(r)& — &7 P(r])Z] <
/m[ 2zt z + y2w wldt + Z 2T P(rH)e — &' P(1] )a). (41)

From (34) we have Z[i‘:TP(Tj):E —&TP(r7)&] <0

1=0
Therefore, with zero initial condition, it follows that the stable global closed loop system
(23) satisfies the H,, performance, that is, ||z|| < 7| w||- ]

Based on the above theorem, an algorithm to obtain an H,, output feedback controller is
as follows.
Algorithm 2 of the H, fuzzy output feedback control design:

Step 1. Choose the approximate upper bounds (29) by using nonlinear programming algorithm
or experience in {7| and a constant .

Step 2. Set g, =1,forl=1,2,---,m
Step 3. Use the LMI toolbox in Matlab to solve the inequalities (34) and (35). If the solutions
to 4;, By, Cy, Ej, E11, Ejp, X; and Y] are found, then determine M;, N; to satisfy (37), and

an H,, output feedback controller can be obtained by (38), and stop. Otherwise go to
the next step.

Step 4. Set €; = ¢;/2. If ¢; is less than some prespecified computational threshold, then stop
and declare that the proposed algorithm fails. Otherwise, go to Step 3.

2 An Example

To 1illustrate the H,, fuzzy output feedback control design algorithms, we consider the

following problem of balancing an inverted pendulum on a cart. The equations of motion for
the pendulum are

gsin(z1) — amlaj sin(2x,)/2 — acos(zy u
41/3 — aml cos?(x,)

i‘l — L9, i?g = + W, (42)
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where x, denotes the angle of the pendulum from the vertical, x5 is the angular velocity,
g = 9.8m/s” is the gravity constant, w is the external disturbance variable which is a sinusoidal
signal, w = sin(27t).m is the mass of the pendulum, M is the mass of the cart, 2l is the length
of the pendulum, and u is the force applied to the cart. a = 1/(m + M ). We choose m =2.0kg,

M=8.0kg, 2[=1.0m in the simulation. The following fuzzy model is used to design H., output
feedback fuzzy controllers.

R': IF z1(t) is about 0, z5(t) is about O,
THEN ®(t) = A;x(t) + Byu(t) + B,w(t), (43a)
y(t) = Crz(t),
z(t) = Caz(t),
R?: IF r1(t) is about £ /3, z2(t) is about O,

THEN &(t) = Ay (t) + Bau(t) + Byaw(t), (43b)
y(t) — Cgil‘)(t),
z(t) = Cro(t),
where
0 1] 0 ] 0
Ay = 117.2941 0}’ B = [——0.1765_  But = [1] Cr=[1 0, Ca=[1 0]
[0 1 0 [0]
A2 = 12.6305 0}’ B = [—0.0779}’ Buz = 1]’ Cr=[1 0, Cz=11 0]

We use the following membership functions

pr(z1(t)) = (1= 1/(1 + exp(=7(z1(t) — 7/4)))) - (1/(1 + exp(=T(z1(t) + 7/4)))),
pa(z1(t)) =1 — pa(za(t)). (44)

Application of Algorithm 1.
Case 1 (7 = o0). Let the H,, performance bound 7 = 0o. According to the first algorithm,

the following result has been obtained

- 1 —90.1320 —.7910 . —~302.2 .
A=l 7910 0.5188}’ b= { 31 ] Ci =[3028 726.3)
- [ —11.9122 —.4066 — —302.2 -
— - —_ . 7 .
Az - —.4066 0.4810}’ B [ 31 } Cp = (3028 726.5]
¥ — (12716 —3.7912| . _ [100.9821 —2.6440
T | —3.7912 285691 |’ © | —2.6440 0.9071 |
' . —137.4 458.4 ]
Choosing M = L(l) (1)], and computing N = [ 13387 : “z 40| by (11). For the first local

system and the second local system respectively, the local output feedback controllers based on
(12) have been obtained as follows

[ —521.0 679.3| 5 [ 498.2041
—92.15 402.1|' T |217.2123

ﬁ

A C.. = [231.1 486.3);

)

A —~582.9 786.2
27 1 _84.60 390.4

498 2041
_ _[931.1 486.3|.
]’ Bez [217.2123]’ Cez = [231.1 |

Fig.1 sows the angle response of the system (42) for an initial condition x; = 70°, o = 0.1¢ can
be observed that the performance of disturbance attenuation is not satisfactory.
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Case 2 (v = 1). Now we choose the bound v = 1. Similar to the procedure of Case 1, the
following result has been also obtained

_ —~110.0881 —.6168 . —30256| -
Au=| _g68 —ow0]° 17| 26 |0 T J
_ | —83.0442 —.4807 _ 302561 -

p— — - 2 - 9214
A2 = 4507 -—.3013}’ Ba=| g6 |) Co=[2759 13924,
w | 11705 ~4.2171] v _ (215.5097 —2.3192 |

~ ] —4.2171 39.4660 |’ © | —2.3192 5490 |

—261.0 1000.4
—5.0 304

With M = é (1) ansz[

] . the first and the second local controllers have
been obtained respectively

—1604.9 3071.7 (10209

Act = [ —233.9 1014.0|° Bey = 3241 | Cor = [205.2  1188.3)
[ —2249.5 2928.6 1020.9

Anp = 2697 9848 | B., = 3241 | C.o = [205.2 1188.3].

Fig.2 shows the angle response for the same initial conditon. The performance of disturbance
attenuation has been greatly improved.

1.4 ———— - —
1.2

_0_2 e i L. A
0 2 1 6 8 10

time (sec) time (sec)

Fig.1 Angle response for Algorithm 1 (v = o0) Fig.2 Angle response for Algorithm 1(y = 1)

Application of Algorithm 2.
Using the approximate upper bound searching algorithm in [7]|, we can find the upper
bounds for the first local system and the second local system respectively,

Ey =[Esas Epi); Ea1=01(4; — A1), Ep; =0.01(By — By). (45a)
Ey =[Eas Epga|; Eap =0.1(A; — As), Epgs = 0.01(B; — By). (45b)

Case 3 (v = 00). Let the H,, performance bound 4 = oo. For the first local system,
according to Algorithm 2, for €; = 0.1, the following result has been obtained

- |—52.6031 -5922] - [-1809] -
Ar = | —.5922 0.3003}’ 51 = 3921 |’ C1=[270.8  659.1],
Y. - | 0.8211  —2.3202 v _ |196.4483 —3.6804
P —2.3202 351244 |7 ' T | —3.6804 0.5611 |
. (1 0 . —168. . "
Choosing M; = 0 11 and computing Ny = [ 2652?34830 582?7 02‘7417'26 by (35), we can obtain

the first local output feedback controller based on (36) as follows
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: _

—366.4508 866.2116 378.9967

Ac — cl — ) cl — ' - L.
P | —22.3366  93.2886 | Bet | 52.0554 Cor = [270.8 659.1]

For the second local system, for ¢ = 0.1, the following result has been obtained

- [—-29.0009 -8601] - [-—497.8] -
Ay = 8601 —.8002 | By = 63 | Cy = [235.8507 799.0445],
Y. - 9132 —2.1156 V. =  88.2243 —3.3092

7 [ -2.1156 185530 | "% | —3.3092 1.0091 |°

10 —86.5764 248.0429 | |
0 1 5 1568 —24.7228 by (35), we can obtain the

second local output feedback controller based on (36) as follows

Selecting My =

} , and finding N, =

—181.2207 328.0026 280.2263
Aez = [ —36.1109  53.0203 } B2 =1 570036 |* ©2 = 2358507 799.0445]

Fig.3 shows the angle response of the system (42) for the initial conditon z; = 70°,z, = 0. It
can be observed that the performance of disturbance attenuation is not satisfactory.

Case 4 (v = 1). Now we choose the bound v = 1. Similar to Case 3, for the first local
system, for €; = 0.1, the following result has been obtained

= [-25.4997 —.5922| - | -4908.3] -
_ = | = [231.0 1970.5

A - —-.5922 1824 |’ 51 | —11.2 |° Cr = [231.0 |

Y. - .6008  —1.9942 v, _ | 112.0088 —-2.0147

YT -1.9942  19.8816 | YT | —2.0147 8447 |°

. 1 0 - [ —70.3126 263.4234
With M, = 0 1] and N; = [ 28949 —19.8117 the first local controller as follows

| —155.0308 354.3088 (278.7704 |

- = C. = [231.0 1970.5).

At | —26.3354 28.0917}’ Bet | 46.0198 |’ ¢ | |

For the second local system, for €5 = 0.1, result, has been found

~ [-20.6622 —.8038 - | —3946.6 ~
— B, = . Cy =[258.9 920.2],
Az - —.8038 1.8507]’ 271 -83 ] 2 = | |
Y. — 5455 —1.2942| . _ | 88.6051 ~3.2240
27 1-1.2042 17.8494 |° % | -3.2240 0.5047 |
o i
.. 1 0 —51.5066 172.2192 .
With M, = 0 1) and Ny = | 2.4119 —12.1811]’ the second local controller 1s

A _ |—110.7732 323.8752| 224.4703 |
27 | -26.2210 40.9022 |° T | 31.6650 |

C.o = [258.9 920.2].

Fig.4 shows the angle response for the same initial condition. The performance of distur-
bance attenuation has been greatly improved.
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Fig.3 Angle response for Algorithm 2(y = o0) Fig.4 Angle response for Algorithm 2(y = 1)

Conclusions
This paper addresses two new kinds of output feedback control design methods with H

performance for fuzzy dynamic systems. The H, fuzzy output feedback controllers can be
obtained by using LMI techniques. However, due to using the piecewise differentiable Lyapunov
function, one boundary condition has been imposed in the second method, which is the topic
of further study.
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