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METHOD OF EQUIVALENT WORKSTATION

FOR MODELING AND ANALYSIS OF
MULTISTAGE UNRELIABLE TRANSFER
LINES WITH RANDOM PROCESSING TIMES

SHU Songgui JIANG Changjun
(Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China)

Abstract This paper presents an efficient method of “equivalent workstation” for
modeling and analysis of multistage transfer lines with unreliable machines and finite
butfers. The random processing times for discrete parts and random failure and repair
times for machines are assumed. The unrelible machines and their random processing
times lead to blockage and stavation in operation due to limited storage capacities. This
makes the problem of modeling and analysis very difficult to treat as they require large
state spaces and can’t be decomposed exactly. In this paper a single buffer between two
reliable workstations is analysed first. Then an equivalent workstation without starvation
and blockage i1s constructed. Thereafter connecting all the equivalent workstations in
series we get the “equivalent transfer line.” A set of performance measures such as the
production rates, efficiencies and average inventory levels are derived in explicit

analysical expressions. Finally two numerical examples are given for comparing the
calculated results with those of Y.F. Choong & S.B. Gershwin, Ref. [10].

Key words Flexible manufacturing system(FMS), computer integrated manufacturing
system(CIMS), buffer inventoy levers, throughput (poduction rate), reliability

engineering, operations research.
1 INTRODUCTION

The unreliable multistage transfer line with finite buffer is a special large system. It 1s subject
to interruptions in operation due to finite buffers and unreliable machines with random processing
times. The performance characteristic of such a system is very difficult to solve analytically because
it requires large state spaces and can not be decomposed exactly.

The literature shows that a lot of good work about this problem has been done by some
researchers for different conditions in different ways. As the character of processing times is

concerned, the related literature can be divided into two major classes. The first consists of papers
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with deterministic processing times, but the failure and repair times are random, such as Ref.[1-7]. In
which [2,3] were solved by discrete approach and others by continuous approach. A second class of
the papers includes those with random processing times. Moreover the failure and repair times are
also random. Ref.[8-12] belong to this class in which only {8] was solved by discrete approach and
others by ontinuous method.

As far as the authors are aware, the exact results have been obtained only in a few papers for a
very limited stage lines, such as Ref.[1] for two stage production line and [2] for three stage line. For
more than three stages only the approximate and simulation methods have been studied.

The research work in this paper falls into the second class. An equivalent workstation method
is proposd for analysizing the n-stage transfer line with random processing times. A finite
intermediate buffer between two reliable workstations i1s solved first by Markov process into & +1
states, but only two states (unfull and unempty) are used for constructing the *“equivalent
workstation”. Then connect all the equivalent workstations in series to form an “equivalent transfer
line”. This new model can be treated as a continuous operating production system, thus removing all
the interrupting operations out of the equivalent transfer line. Finally, two examples are given for

tllustrating the application of this new method in engineering analysis and design, and the results are
compared with Ref.[10].

2 ASSUMPTION

Consider a n-stage transfer line as shown in Fig.1.
Q —{M(B) ..

Fig.1 n-stage tansfer line

Here M, indicates the ith machine and B, indicates the jth buffer, i=12,---,n.

Assumptions listed below are used for formulating the mathematical model:

1) The processing times for any discrete parts at the individual workstations are random
variables. let @, denote the rated production rate of the ith machine in pieces per time unit.

Transportation takes negligible time compared to machining times.

2) Any failured machines are repaired without delay. The life times and repair times are
distributed exponentially with parameters A, and 4, respectively There are no two or more failures

occured simultaneously.
3) If the buffer B, , is empty and M,_, (or another before it) in failure condition (under repatr),

then M, is starved. If the buffer B, is fulland M,,, (or another after it) in failure condition (under
repair), then M, is blocked.

4) The tirst workstation is never starved and the last workstation is never blocked.
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5) Machines fail only while processing parts (operation or state dependent failures). It means

that the machine in starvation or blockage state can not fail.

3 ANALYSIS OF INTERMEDIATE SYSTEM BUFFERS

Consider the ith intermediate butter between two reliable workstations as an isolated system

shown In Fig.2.

w‘ w, w; a)l'
—_——p
CO—=( o= 2 D=k
mf’fl m,+l (‘)1.}] a).f'l'l

Fig.2 Diagram of buffer state transition

For random processing times, the buffer states have been analyzed by Markov process [11,12]

and the steady state results obtained as follows:
The probability for the jth state of buffer,

"1

pl(-p) S
Pf = mqJT I:Z Pj =1 (1)
I-p j=0 )

where p. =w, /w,,,,k, is the capacity of the buffer storage (including one unit in workstation).

Obviously, when p, =w, /w,,, =1.

1
P, =
Tk +1

(1a)

For constructing the equivalent workstation in the next section, we need only the following two

states:
_ - p"
P =1-F *-] F::“ (unfull)
e )
) pi(1-p")
Poy =1-Fy = “I—T;T“ (unempty)
- p, J
— — k.
P, =P, =— (2a)
7Y k4l
The average invetory level in bufter,
k. k; +1 ki +2
-, p; —(k; +1)p;’ +k,p,
My =2 JP == G)
j=1 I“Pf P; + 0;
At p =w,/w,, =1, then
k.
M, =— (3a)
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4 EQUIVALENT WORKSTATION

B A

The equivalent workstation is defined as an isolated machine with neither starvation nor

blockage.

Let P, represent the probability of the jth state for ith workstation in the transfer line. Where

j ranging from | to 5 denotes the states of normal working, blockage, starvation, both blockge and

starvation and repair respectively. Then the state transition diagram of the ith workstation is shown

as Fig.3.

()
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Fig.3 Transition diagram of machine M,

According to definitions of blockage (F,) and starvation (P,) as given in assumption (3)

(neglecting the influences of failures before M, , and after M,,,), we have

Py = P(Pyyy, P, ks Lagivy) = Pogin P k., Lai+l)

Py =P (7 0(i-1) » ﬁk,- ’ Fm(f-l)) = 0(1‘-1)}3;; P a(i-1)

Hi
H; +4,
and define B, = P, P, availability of buffers related to M .y

where P = = A; availability of isolated M.

then
P]f =_P;1P2f +ﬁ3fP3i +EiFS‘JFP4.‘ +Iu.iP5.r']
_(be +PS:' +PbiPSf +/‘Lr)P1f

Py = Py, P ”Efpzf
}33.; =Py P, “F.S'JFPﬁ
-P:f =P, Py P, “EfEfPeu
}_)5:' = AP -, P,

(4)

(4a)

(5)

For the steady state, the left sides of (5) should be equal to zero. Then solve the equations

simultaneously, we get.
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PZI--__f”Pm Py, = ” &Pu
Pbr’ Bﬁ
P.. A
P, ==-P,, P,=—P, : (6)
P, | H;
2 P. P. P.P. A A,
Z P, =l=(1+-2+=L+ 221 0P =(—]—-—+—’—)P“
J=l Pm' PSf 'Bf H; B: H,

}j” — e ]_ — ﬂf !
l +2’f Jui-}-liBf
B, H,

= A; = E; probability of normal working, or availability

(also efficiency) of equivaient workstation

pP.
P, =="-A] (probability of blockage for M)

|

By,
P..
Py = % A/ (probability of starvation for M) (6a)
Si
‘be PSI ’ 'y .
P, = P A! (probability of both blockage and starvation for M)
A, A,B.
P,, = — A = ———— (probability of repair for M)
H; H; +A; B,

The above five exprssions in eqn.(6) or (6a) are also the steady state time proportions of the

respective states (see calculated results in Section VII-B-(3)).
The idle time proportion due to blockage and starvation of M, is

ﬂi(l—Bj)

PbS; =P2j+}%i+P4f=ﬂi+ﬂ,-B; (6b)
The production rate (throughput) of the equivalent workstation for M, ,
w. U B.
W, = Py, = — (7
H; + A, B,
The isolated production rate of M,
. L.
W/ =w, A4, = dat (7a)
qu + 21’

5 EQUIVALENT TRANSFER LINE

Connecting all the equivalent workstations in series we get an equivalent transfer line as shown

in Fig.4.

Fig.4 Equivalent transfer line
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From the principle of conservation of the processing piece flow in the transfer line, the steady
state manufacturing rate for each workstation as eqn.(7) should equal to the system production rate

namely
W U.B. w. )
WS '—“W’f-*-i%—‘iB—-:“_—-T—:Ar&),
+A1.B |
Fi b [—1——4- '] L (8)
B, H;
orW,=P.w, =Aw,i=12,-,n J

The above eqution is also the ncessary and sufficient condition for multistage repaiable transter
line without any creation or missing of processing piece along the line.
The efficiency of the system is defined as the probability of production at full rate, or the ratio

of actual processing time for all the individual workstations to the total rated system production
time.

> £ )

The above equation may be used as the objective function for optimal design.

If equation (8) can not hold, then the system production rate should be the bottleneck
throughput,

W, =minW, = min OiliTi (10)
i i u; + A B,
For the homogeneous transfer line (e.i: p=p, =, /w,,, =1, and let k, =k, =k, then by
eqn.(4) and (2a), we have
- — koo A k A ]
Py = PogiatyPri iy = X X PPN
k+1 k+1 pu+A (k+1D° u+4
— — ] k A k A
Psi = Potity P Lagiony = X X = e X ( (4b)
k+1 k+1 pu+2d (k+D)° u+Ai
— k i
B, =P, P, =(1- P, Y1~ Pg)=[l - x —2 ) |
bi+ S b S (k 4+ 1)2 Py + l

Then substituting B; in Eqn.(8) and (9) we get W, and E,.

For nonhomogeneous transfer line, the bottleneck production rate will be the system
throughout. Moreover, if the device of intelligent control is used for adjusting the production rates of

each workstation on line, then eqn.(8) can hold for the whole system and the system will operate as a
homogeneous transfer line with bottleneck throughput.

6 AVERAGE INVENTORY LEVELS IN THE INTERMEDIATE
BUFFERS OF MULTISTAGE TRANSFER LINE

Eqn.(3) represens the average inventory level of a buffer between two reliable workstations.
For the homogeneous transfer line, p, =, +w,,, =1, then Eqn.(3) becomes (3a).

However, for either homogeneous or nonhomogeneous unreliable multistage transfer line, we
can derive the average inventory levels for each intermediate buffer and whole line as follows.
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Based upon assumption (2), the individual inventory levels at different failure cases in steady
state can be determined separately according to the following procedures.

1) For the case of no failure, the homogeneous transfer line or the line with intellent control
will operate as a homogeneous line with bottleneck throughput. The inventory levels will be
uniformly distributed for each bufter in the line as shown by Eqn.(3a). The probability in this case is

H

P(A.) 21_”1 A = H Hi (11)
i=1

-1 M A,

2) It the failure occures at the ith workstation only, then all the buffers before it will be full and
the others after it will be empty. The probab_ility for this case is

P(4, )_——]‘[ 4, ....1]'] 4, (12)

1 =]

— A A,
where ]:A/A il_/_(_‘f_li:__)_ = — d=12-.n.

M+ A u

3) For the simplification of calculations, we take the weight of the probability for the case of no
failure (Egn.(11)) as unit, then the weight for the ith workstation failure (eqn(12)) will be I .,

4) Finally, the average inventory level of the ith buffer can be calculated as histed in table 1.
Table 1 Average inventory Levels for homogeneous line

Buffers Average Inventory Levels, M, Remarks

Workstations
Condition
no fatlure
1 st fatlure

2nd failure

(n — Dth
nth

(13)

Moreover, for nonnomogeneoous line without intelligent control, in the case of no filure the
inventory level for the ith buffer, M, , should be calculated by eqn.(3). Then eqn.(13) becomes

M, +k,\:: I,

M, =———L (13a)

! I
+> I
P
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The average inventory level for either kind of whole line 1s

n-1

My =), M, +] (13b)

The last one added in the above equation is the one storage unit in the workstation M.

7 NUMERICAL RESULTS AND DISCUSSION

7.1 Numerical Results
Example 1 Take a three stage nonhomogeneous transfer line with parameters as given In

Table 1 of Ref.[10] (p. 156) as an example.
Find: 1) System throughput (production rate), W,.

2) Individual buffer inventory levels ( M,;, and M,,) and whole line inventory level (M, ).

Solution

Given Parameters (From Table 1, Ref |10

Symbols

1 0.05 0.5 0.3125 ymoos i
brackets used

2 0.06 ~ ~ in[10] W’
3 0.05 0.5 0.3125 by eqn.(7a)

The varying values of @, and the corresponding results calculated are listed in the following

table:

Results umerical answers 1n brackets given in [10])

S kt k2
-- *

w

0.060) | (9.618) | (0.382) | eqn.(4)
(0.115) | (8.836) | (1.164) | eqn.(4a)
0.209) | (6.203) | (3.736)

08 0.48 -- 09978 | 03121 | 4.526
(0.238) | (4.841) | (5.159)

'
(0253) (3 669 (6331)
(0.266) | (3.153) | (6.849)

100 | 60 20,0 !

1000] 600 | 0005 | 200 |
o | o 1 0 | e | 1 | 1|




H1 A 0 5 i F Ol 209

Notation:
) W, are determined by eqn.(10) at the bottleneck of the transfer line. 4. @, increases

gradually until W, reachs W, (corresponding to w, =35 + 9), the bottleneck shifts from M, to M, .
2) M,; are calculated by eqn.(13a) directly. Then by (13b), we get M, =M, +M,, +1=
9+1=10 for all @, from 0 to « (also Ref.[10}: n+n =10).
3) From the results of this example, we can see that our method may extend to the whole range
of w, from 0 to cc. Similarly it is true for all other parameters, such as A, i, & .

Example 2. Take a seven stage transfer line with paramters given in Table 3 of Ref.[10]

(p.157) as a second example. Answer the same questions as example 2.

Solution

Given paramaters (From Table 3, Ref.[10])

] symbols in
) brackets used
4 W; by
3 eqn.(7a)
6
7
The results calculated are listed in the following table;
Results
f I PN T PR P A
p; =0, /0,
W, by eqn.(7) 0.2192
M, by eqn.(13a)
n. from [10}
Notation:

1) The line throughput by eqn.(10), W, =min W, =W, =0.1672 , which is larger than 0.1333

in Ref.{10].
2) The individual buffer inventory levels calculated in the above table as A, . Then by

eqn.(13b) we get > M, =11.8873+1=12.8873, while Z n. =13.6242.

i

B. Discussion
1) The storage capacity of B, between M, and M,,, is denoted by k, = c, +1, which includes

one unit in M, . Another unit in M,,, should be accounted as an additional unit in the next buffer

B .. While c, is the actual storage capacility of the external buffer as defined in literatures [5] and

i+]

[12], this definition of &, agrees with those of Ref. [4] and [5].
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From the above two examples, the answers of the whole line inventory leveis M, are almost

the same as those of Ref[10]. However, the answers of individual inventory levels M, are

somewhat different.
2) For state dependent failures (assumotion 5), the exact expression of system throughput has

been derived as shown by formula (8).

W, H; B, W,
gt = ®)
lur _/L'B:' _1_+i
B.' ;ur'
Then from eqn.(6), we have
A,
P+Py=1-P,-P, - P, ZPU[I‘}"_I]
H;
H;
P = (1-P,; - P = Py)
s+ 4,
Wy =W, = (1-F,; - Py = P;) (8a)

+;L

The above formula is another exact expression of system throughput This can be proved by
substituting eqn.(6a) for eqn.(8a). Then eqn.(8a) reduces to eqn.(8).
Compare eqn.(8a) with eqn.(22) of Ref. [10], which may be written as
W (P)=————- (I"PO(E-I) _Pkf) (14)
The magnitude of eqn.(14) is less then that of eqn.(8a) in two respects:

i) Neglect the effect of the probability of both starvation and blocking simutaneously, since
Pyi-y and P, in eqn.(14) are not exclusible.

i) P,,P, and P, ineqn.(8a) are the probability of blockage, starvation, both blockage and
starvation for Af, as defined in eqn.(6), while F,, ,, and P,; are the probability for the empty and
full state of the (i—1)th and the jth buftfer as defined in eqn.(2). Here F,;_,, 1s larger then P;; and

P, is larrger then P, respectivelsy. So the calculated resuits of system throughput by eqn.(8) or (8a)
are larger than those by eqn.(14) as shown in the above two examples.

Morreover, equation (8) is also true for the whole range of parameters (A,,u,,k%;). For
instance, if A4, + u, =0 (rehable machine), then by eqn.(8) we have W, = w, B.. On the other hand,
if A, +u, =o (unrepairable machine), then W, =0. If k, =k,,, =, then by eqn.(2) we get
Poioy =Py =1 and B, =P, \,P, =1*1=1. thus from eqn.(8), W5 =w,u, +(u, + A,;) . That means

all the stations working as isolated ones. In this case eqn.(14) is also exact, but it is only an

approximate formula in general.
i1) In addition, the state probabilities, namely the time proportions of machine A, can be

calculated by eqn.(6). The results for the above two examples have been obtained as listed in the

following table:
5
Z Pﬂ Remarks
j=1

- 0.0201 0.0007 0.3836 m =0.5

it
I
I

\ 0.5754 0.0201

2 LY E! 0.8376 0.0625 0.0149 0.0011 0.0838
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8 CONCLUSION

This paper presents a new method of “equivalent workstation” for the modeling and analysis of

multistage capacitated tanster lines with unreliable machies and random prcessing times. The main
contributions are listed as follows:

a) The buffer between two reliable machines is analyzed for (k, +1) storage states, but only

two states (unfull and unempty) are used for constructing an equivalent workstation. Thus reduce the
state spaces very much for solving the problem analytically.

b) This equivalent workstation is decomposed into five independent state probabilites (or time
proportions) as expressed exactly in eqn.(6).

¢) An interrupting operation transfer line is converted into a continuous production line by

connecting all the equivalent workstations In series.

d) The important performance measures, such as system throughput (production rate) (eq.8),
system efficiency (eqn.9), and the state probabilities namely the time proportions of machine M,

(eqn.6a) are all derived in exact and explicit exressions.

e) Based upon assumption (2), the average inventory levels for the individual buffers and

whole line are also obtained as shown in (eqn.13, 13a, 13b).
f) Using P, and P, (eqn.d)instead of P, and P, (eqn.2), so the accuracy of performance

measures is improved.

g) The numerical results of two examples (obtained simply by TI-36 solar calculator) are

discussed and compared with those of Ref. [10].
h) This proposed method can be applied to practical engineering design directly.
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5) In the case of the resource being constrained, the generalized optimizing design model is
derived and its optimum solution 1s given;

6) The application of this method is illustrated with an example;

7) The optimizing design method given by this paper can also be applied to other similar
systems (such as IMS, DEDS, and CPMS).
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