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Abstract In this paper, by applying a group of specific orthogonal wavelet packet to Eykhoff
algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPT

is provided. In comparison to Eykhoff algorithm, the new algorithm has better practicability and

wider application range. Simulation results show that the proposed impulse response identification
algorithm can be applied to both deterministic and random systems, and is of higher identification

precision, stronger anti-noise interference ability and better system dynamic tracking property.
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1 Introduction

Impulse response identification is a kind of imparametrization identification algorithm. The tradi-

tional identification algorithms mainly include Eykhoff algorithm and correlation analysis. Correlation

analysis is suitable for random system, and is based on Wiener-Hopf equation given below

Ruz(τ ) =

∫ +∞

0

ĝ(t)Ru(t − τ )dt (1)

where the impulse response function is calculated using both correlation function Ruz(τ ) of system

input-output, and self-correlation function Ru(τ ) of system input, respectively. However, the analytic

expression of the impulse response ĝ(t) is difficult to be obtained by using the algorithm. Only if the

input signal u(t) is limited to be white Gaussian noise with zero-mean, we can obtain

ĝ(τ ) =
1

σ2
u

Ruz(τ ) (2)

where σ2
u is the variance of the input white noise signal. To obtain more accurate estimates of Ruz(τ )

and Ru(τ ), the system input and output are required to be stationary random signals for a long term.

Thus, in general, correlation analysis does not trace the change of the system behavior.

In contrast to correlation analysis, Eykhoff algorithm is suitable for impulse response identification

of deterministic systems. The main idea of Eykhoff algorithm is to express the impulse response function

g(t) as a linear combination of a group of orthogonal function bases:

g(t) =

N
∑

i=1

fi(t)ξi = F
T(t)ξ (3)

where fi(t), for i = 1, 2, · · · , N , are the base functions, and ξ = [ξ1, ξ2, · · · , ξN ]T, which can be obtained

by using grads descent algorithm, is projection coefficients of g(t) on the orthogonal function bases F (t).

In Eykhoff algorithm, the choice of a group of proper orthogonal function bases is important since the

performance of the algorithm is closely related to the localization of the orthogonal function basis in

both time and frequency domains. However, though the resolving power of the traditional orthogonal

function bases is better in time domain, it is worse in frequency domain[1].

Being developed from wavelet transform, WPT can be used as an efficient tool for precisely

analyzing the localization information of a signal at arbitrary time and frequency point[2]. Actually,
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by applying the advantages of WPT, we have successfully developed an impulse response identification

algorithm based on fixed scale orthogonal WPT[3]. In this paper, a new impulse response identification

algorithm based on varying scale orthogonal WPT is proposed, which has better practicability and

wider application range.

2 Basic idea of impulse response identification based on varying scale orthogonal WPT

In WPT, for a given orthonormal scale function ϕ(t), from the double scale difference equation















w2n(t) =
√

2
∑

k∈Z

hkwn(2t − k)

w2n+1(t) =
√

2
∑

k∈Z

gkwn(2t − k)
(4)

the orthogonal wavelet packet for ϕ(t) can be generated as follows.

{wn,j,k(t) := 2−j/2wn(2−jt − k), n ∈ Z/Z−, j ∈ Z, k ∈ Z}

where w0(t) = ϕ(t), {hk}k∈Z and {gk}k∈Z are a pair of conjugate orthogonal filter coefficients deduced

from ϕ(t), respectively.

The impulse response identification based on varying scale orthogonal WPT is that the impulse

response function g(t) ∈ Vj0 is projected on some chosen orthogonal wavelet packet spaces at different

decomposition scales, and by identifying the projection coefficients, namely, WPT coefficients of g(t),

impulse response function can be identified indirectly, where the chosen orthogonal wavelet packet

spaces are not overlapped with each other, and the initial scale space must be covered with the chosen

orthogonal wavelet packet spaces. Given the initial scale vj0 and decomposition layer m, for impulse

response identification algorithm based on varying scale orthogonal WPT, the chosen orthogonal wavelet

packet spaces satisfy
{

U•

j0+k ∩ U•

j0+l = Φ, for arbitary k 6= l

Vj0 = ⊕m
l=1(⊕

nlk
n=nl1

Un
j0+l)

(5)

where ⊕ denotes direct sum operation, U•

j0+k and U•

j0+l denote, respectively, an arbitrary chosen

orthogonal wavelet packet spaces at scales j = j0 +k and j = j0 + l, and Un
j0+l (n = nl1 , · · · , nlk denotes

the chosen orthogonal wavelet packet spaces at scale j = j0 + l.

As an illustrative example, given the initial scale j0, let the biggest decomposition layer l = 4.

Then the structure for original signal space Vj0 being divided by orthogonal wavelet packet spaces

Un
j0+l (l = 1, 2, 3, 4; 0 6 n 6 2l − 1) at different scale j = j0 + l is shown in Fig. 1, where the shadowed

spaces are the orthogonal wavelet packet spaces chosen by impulse response identification algorithm

based on varying scale WPT. Of course, according to engineering requirement, the other orthogonal

wavelet packet spaces satisfying (5) can be chosen also.

Fig. 1 An example of orthogonal wavelet packet spaces selection for impulse response identification based on

varying scale orthogonal WPT (namely shadowed spaces)
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Remark. In the following, we will take the chosen orthogonal wavelet packet spaces in Fig. 1 as

an example.

According to multiresolution theory of wavelet transform[2], if initial scale j0 ∈ Z is small enough,

the scale space Vj0 can approach square integral space L2(R), i.e.,

Vj0 ≈ L2(R) (6)

Hence, for orthogonal wavelet packet spaces, we have

L2(R) ≈ U0
j0+4 ⊕ U1

j0+4 ⊕ U1
j0+3 ⊕ U1

j0+2 ⊕ U2
j0+2 ⊕ U6

j0+3 ⊕ U14
j0+4 ⊕ U15

j0+4 (7)

In (7), the orthogonal wavelet packet spaces U0
j0+4, U1

j0+4, U1
j0+3, U1

j0+2, U2
j0+2, U6

j0+3, U14
j0+4, and

U15
j0+4, whose direct sum is the original signal space Vj0 , are just the chosen orthogonal wavelet packet

spaces for impulse response identification based on varying scale orthogonal WPT in Fig. 1. Accor-

ding to the definition of wavelet packet space, {w0,j0+4,k(t)}k∈Z, {w1,j0+4,k(t)}k∈Z, {w1,j0+3,k(t)}k∈Z ,

{w1,j0+2,k(t)}k∈Z, {w2,j0+2,k(t)}k∈Z , {w6,j0+3,k(t)}k∈Z , {w14,j0+4,k(t)}k∈Z, and {w15,j0+4,k(t)}k∈Z just

compose a group of orthogonal bases of L2(R).

If the impulse response function g(t) is approached by its projection on the above-mentioned

orthogonal bases of space L2(R), then g(t) can be written as

g(t) =

k
j0+4

0
−1

∑

k=0

pg(0, j0 + 4, k)w0,j0+4,k(t) +

k
j0+4

1
−1

∑

k=0

pg(1, j0 + 4, k)w1,j0+4,k(t)+

k
j0+3

1
−1

∑

k=0

pg(1, j0 + 3, k)w1,j0+3,k(t) +

k
j0+2

1
−1

∑

k=0

pg(1, j0 + 2, k)w1,j0+2,k(t)+

k
j0+2

2
−1

∑

k=0

pg(2, j0 + 2, k)w2,j0+2,k(t) +

k
j0+3

6
−1

∑

k=0

pg(6, j0 + 3, k)w6,j0+3,k(t)+

k
j0+4

14
−1

∑

k=0

pg(14, j0 + 4, k)w14,j0+4,k(t) +

k
j0+4

15
−1

∑

k=0

pg(15, j0 + 4, k)w15,j0+4,k(t) (8)

where projection coefficients {pg(0, j0 +4, k)}k∈Z , {pg(1, j0 +4, k)}k∈Z , {pg(1, j0 +3, k)}k∈Z , {pg(1, j0 +

2, k)}k∈Z , {pg(2, j0 + 2, k)}k∈Z , {pg(6, j0 + 3, k)}k∈Z , {pg(14, j0 + 4, k)}k∈Z , and {pg(15, j0 + 4, k)}k∈Z

are the WPT coefficients for g(t) in the wavelet packet spaces U0
j0+4, U1

j0+4, U1
j0+3, U1

j0+2, U2
j0+2, U6

j0+3,

U14
j0+4, and U15

j0+4, respectively. Since the WPT coefficients characterize the time-frequency properties

of g(t) in a specific frequency band, respectively, we can learn about the frequency components of g(t)

by using the WPT coefficients, and we can even learn about the frequency components of g(t) in a

specific frequency band.

Consider a single input single output linear system

y(t) =

∫

g(t)u(t − τ )dτ = g(t) ⊗ u(t) (9)

where u(t), y(t) and g(t) are system input, output and impulse response function, respectively, the sign

⊗ denotes convolution operation.

Substituting (8) into (9), and letting

y(t) =

∫

g(t)u(t − τ )dτ = g(t) ⊗ u(t) (10)

we have

y(t) =

k
j0+4

0
−1

∑

k=0

pg(0, j0 + 4, k)ζ0,j0+4,k(t) +

k
j0+4

1
−1

∑

k=0

pg(1, j0 + 4, k)ζ1,j0+4,k(t)+
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k
j0+3

1
−1

∑

k=0

pg(1, j0 + 3, k)ζ1,j0+3,k(t) +

k
j0+2

1
−1

∑

k=0

pg(1, j0 + 2, k)ζ1,j0+2,k(t)+

k
j0+2

2
−1

∑

k=0

pg(2, j0 + 2, k)ζ2,j0+2,k(t) +

k
j0+3

6
−1

∑

k=0

pg(6, j0 + 3, k)ζ6,j0+3,k(t)+

k
j0+4

14
−1

∑

k=0

pg(14, j0 + 4, k)ζ14,j0+4,k(t) +

k
j0+4

15
−1

∑

k=0

pg(15, j0 + 4, k)ζ15,j0+4,k(t) (11)

Since system input u(t), output y(t) and the chosen orthogonal wavelet packet bases are known,

ζn,j0+m,k(t) can be calculated. From (11) and by using the least-square method, the projection co-

efficients for impulse response function g(t) in orthogonal wavelet packet spaces U0
j0+4, U1

j0+4, U1
j0+3,

U1
j0+2, U2

j0+2, U6
j0+3, U14

j0+4 and U15
j0+4 can be identified. Thus from (8) the impulse response function

g(t) is identified indirectly, and by using reconstruction algorithm of orthogonal WPT we can obtain

the impulse response function ĝ(t) in the time domain.

3 Theory algorithm and fast binary tree recursion algorithm for ζn,j0+m,k(t)

Definition 1[4]. The projection operator from space l2(Z) to space l2(2Z) is defined to be F0

and F1, i.e.,














F0(Sk)(l) =
∑

k∈Z

hk−2lSk

F1(Sk)(l) =
∑

k∈Z

gk2lSk

(12)

where {hk} and g{gk} are low pass filter coefficients and high pass filter coefficients in the double scale

difference equation (4), respectively.

In the following, a lemma and a theoretical algorithm for ζn,j0+m,k(t) proposed in [3] by us will

be quoted.

Lemma 1[3]. For WPT, let initial scale be j0, and decomposition layer m ∈ Z+. For arbitrary

n ∈ {0, 1, · · · , 2m − 1} at the scale j = j0 + m, the wavelet packet basis function wn,j,l(t) of wavelet

packet space Un
j0+m can be expressed as follows.

wn,j,l(t) = Fe1
{Fe2

{· · · {Feni
{w0,j−ni,k(t)}(kni

)} · · ·}(k2)}(l) (13)

which can be simplified as

wn,j,l(t) = Fe1
Fe2

· · ·Feni
{w0,j−ni,k(t)}(l) (14)

Here {w0,j−ni ,k(t)}k∈Z are orthonormal bases of wavelet packet space U0
j−ni

(namely scale space Vj−ni
),

and ei is the ith coefficient of binary expression of n, i.e.,

n =

ni
∑

i=1

ei2
i−1 (15)

where ni is the maximal index for binary expression of n.

Proof. Omitted.

Theorem 1. (Theoretical algorithm for ζn,j0+m,k(t))[3]: Assume that for WPT, its initial scale

is j0. For arbitrary decomposition layer m ∈ Z+, arbitrary integer n ∈ {0, 1, · · · , 2m − 1} and k ∈ Z, at

decomposition scale j = j0 + m, ζn,j0+m,k(t) defined as (10), namely ζn,j,k(t), satisfys that

ζn,j,k(t) = Fe1
Fe2

· · ·Feni
{ζ0,j−ni,l(t)}(k) (16)

where ei is the ith coefficient for binary expression of n, and ni is the maximal index of binary expression

of n, i.e.,

n =

ni
∑

i=1

ei2
i−1 (17)
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Proof. Omitted.

To conveniently calculate ζn,j0+m,k(t), it is necessary to propose a discrete fast algorithm. Owning

to the specific form of orthogonal wavelet packet bases, in this paper the sampling interval of time variant

t is set[1]

Ts = 2j0 (18)

Thus time variable t can be written as

t = i · Ts = 2j0 i, i ∈ Z/Z− (19)

Substituting (19) to (11), we get

y(2j0 i) =

k
j0+4

0
−1

∑

k=0

pg(0, j0 + 4, k)ζ0,j0+4,k(2j0 i) +

k
j0+4

1
−1

∑

k=0

pg(1, j0 + 4, k)ζ1,j0+4,k(2j0 i)+

k
j0+3

1
−1

∑

k=0

pg(1, j0 + 3, k)ζ1,j0+3,k(2j0 i) +

k
j1+2

1
−1

∑

k=0

pg(1, j0 + 2, k)ζ1,j0+2,k(2j0 i)+

k
j0+2

2
−1

∑

k=0

pg(2, j0 + 2, k)ζ2,j0+2,k(2j0 i) +

k
j0+3

6
−1

∑

k=0

pg(6, j0 + 3, k)ζ6,j0+3,k(2j0 i)+

k
j0+4

14
−1

∑

k=0

pg(14, j0 + 4, k)ζ14,j0+4,k(2j0 i) +

k
j0+4

15
−1

∑

k=0

pg(15, j0 + 4, k)ζ15,j0+4,k(2j0 i)

(20)

It must be pointed out that (20) is not a kind of approximation for (11). Since (11) for arbitrary

time variable t holds, (11) necessarily holds for t taking 2j0 i. Therefore, the discrete form (20) of (11)

does not cause any error for pg(n, j0 + m, k) identification. In order to simplify the expression, here we

use ∗(i) to substitute for ∗(2j0 i), which is defined in [1], i.e.,

∗(i) = ∗(2j0 i) (21)

Thus (20) can be simplified as

y(i) =

k
j0+4

0
−1

∑

k=0

pg(0, j0 + 4, k)ζ0,j0+4,k(i) +

k
j0+4

1
−1

∑

k=0

pg(1, j0 + 4, k)ζ1,j0+4,k(i)+

k
j0+3

1
−1

∑

k=0

pg(1, j0 + 3, k)ζ1,j0+3,k(i) +

k
j0+2

1
−1

∑

k=0

pg(1, j0 + 2, k)ζ1,j0+2,k(i)+

k
j0+2

2
−1

∑

k=0

pg(2, j0 + 2, k)ζ2,j0+2,k(i) +

k
j0+3

6
−1

∑

k=0

pg(6, j0 + 3, k)ζ6,j0+3,k(i)+

k
j0+4

14
−1

∑

k=0

pg(14, j0 + 4, k)ζ14,j0+4,k(i) +

k
j0+4

15
−1

∑

k=0

pg(15, j0 + 4, k)ζ15,j0+4,k(i) (22)

Based on the generating mode of orthogonal wavelet packet bases in multiresolution structure, a

discrete fast binary tree recursive algorithm for ζn,j0+m,k(i) computation, proposed in [3] by us, will be

quoted in the following.

Theorem 2. (Discrete fast binary tree recursive algorithm for ζn,j0+m,k(t))[3]: Assume that

for WPT, its initial scale is j0. For arbitrary decomposition layer m ∈ Z+ and arbitrary integer

n ∈ {0, 1, · · · , 2m − 1}, the discrete algorithm for ζn,j0+m,k(t) is given by

1) For j = j0, ζ0,j0,0(i) ≈ 2j0/2u(i)

2) From ζn,j,0(i), ζn,j,k(i) can be calculated as

ζn,j,k(i) = ζn,j,0(i − 2j−j0k) (23)
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where j = j0 + 1, j0 + 2, · · · , j0 + m, 0 6 n 6 2j−j0 − 1.

3) According to Fig. 2, ζn,j,0(i) can be calculated step by step as follows















ζ2n,j,0(i) =
∑

k∈Z

hkζn,j−1,0(i − 2j−1−j0k)

ζ2n+1,j,0(i) =
∑

k∈Z

gkζn,j−1,0(i − 2j−1−j0k)
(24)

where j = j0 + 1, j0 + 2, · · · , j0 + m, 0 6 n 6 2j−j0 − 1.

Fig. 2 The structure of discrete fast binary tree recursive algorithm for ζn,j0+m,k(i)

Proof. Omitted.

According to Theorem 2, all ζn,j0+m,k(i) can be calculated step by step. Since the lengths of high

pass filter group and low pass filter group of wavelet are limited, the burden of recursive computation

in Theorem 2 is very low, and the speed of computing ζn,j0+m,k(i) will be improved very much. Hence,

the discrete fast binary tree recursive algorithm for ζn,j0+m,k(t) in Theorem 2 is suitable for practical

application.

4 Problems discussion

In the proposed impulse response identification algorithm, some problems such as orthogonal

wavelet packet bases, initial scale j0, decomposition layer m of orthogonal WPT, and kj0+m
n in (8)

must be considered.

1) Orthogonal wavelet packet bases selection

The selected orthogonal wavelet packet bases are generated by initial scale function of Daubechies

II (DB2)[5].

2) Initial scale j0 selection

The selected j0 directly affects the precision of the orthogonal wavelet packet series of g(t) in (8).

At present, there is no widely accepted criterion to select j0, and in general, j0 takes a less negative

integer.

3) Decomposition layer m selection

For given initial scale space Vj0 , decomposition layer doesn′t affect the precision of the proposed

impulse response identification algorithm, but finally determines the number (i.e., = 2m) of frequency

bands of g(t) divided by wavelet packet decomposition.

4) kj0+l
n computation in (8)

In (8), kj0+l
n (l = 1, 2, · · · , m) virtually denotes the number of WPT coefficients for g(t) in the

wavelet packet space Un
j0+l at decomposition scale j = j0 + l. Suppose that the number of WPT
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coefficients for g(t) in the initial scale space Vj0 (i.e., = U0
j0) is kj0

0 . We then have

kj0+l
n = 2−lkj0

0 n ∈ {0, 1, · · · , 2l − 1} (25)

5 Impulse response identification algorithm based on varying scale orthogonal WTP

Impulse response identification algorithm based on varying scale orthogonal WPT is proposed as

follows.

Step 1. Determine the initial scale j0 and decomposition layer m of orthogonal WPT.

Step 2. Estimate the valid action time tg of impulse response function g(t). From (25) for g(t) in

the wavelet packet space Un
j0+l (0 6 n 6 2l−1) at the given decomposition scale j = j0 (l = 1, 2 · · · , m),

the number of WPT coefficients, can be computed.

Step 3. By adopting orthogonal wavelet packet bases function of Daubechies II (i.e., DB2), and

according to discrete fast binary tree recursion algorithm in Theorem 2, all ζn,j0+l,k(i) required in (22)

can be computed step by step, where 0 6 l 6 m, 0 6 n 6 2l − 1, 0 6 k 6 2−1kj0
0 − 1.

Step 4. Construct the identifying parameter vector X .

Now, take the chosen orthogonal wavelet packet spaces in Fig. 1 as an example, and let xs (s =

1, 2, · · · , 8) denote the row vector composed of all WPT coefficients pg(n, j0 + l, k) (l = 1, 2, · · · , m(=

4), 0 6 k 6 2−lkj0
0 − 1) for g(t) in the wavelet packet spaces U0

j0+4, U1
j0+4, U1

j0+3, U1
j0+2, U2

j0+2, U6
j0+3,

U14
j0+4, and U15

j0+4, respectively. The identifying parameter vector is constructed as

X = [x1, x2, · · · , x8]
T (26)

where sign T denotes matrix transpose operation.

Step 5. Construct data vector A(i).

Let as(i) (s = 1, 2, · · · , 8) denote the row vector composed of all ζn,j0+l,k(i) (0 6 k 6 2−lkj0
0 − 1)

generated by convolution in the wavelet packet spaces U 0
j0+4, U1

j0+4, U1
j0+3, U1

j0+2, U2
j0+2, U6

j0+3, U14
j0+4,

and U15
j0+4, respectively. The data vector A(i) is constructed as

A(i) = [a1(i), a2(i), · · · , a8(i)]
T (27)

Step 6. Identify WPT coefficient sequences.

According to the definition of X in (26) and A(i) in (27), (22) can be rewritten as

A
T(i)X = y(i) (28)

For (i = 1, 2, · · · , L) taking all sampling points, (28) can be rewritten as

A
T
X = Y (29)

where A = [A(1), A(2), · · · , A(L)] and Y = [y(1), y(2), · · · , y(L)]T.

By using the least square method, WPT coefficient sequences X , for g(t) onto the chosen orthog-

onal wavelet packet spaces, can be identified easily.

Step 7. Process the WPT coefficient sequences X .

Consider that WPT coefficient consequences X for g(t) onto the chosen orthogonal wavelet packet

spaces are of specific physics meaning. So X can be directly used to analyze the properties for g(t)

in some specific frequency bands. Furthermore, according to the identified WPT coefficients, by using

reconstruction algorithm of WPT, the original impulse response function ĝ(t) in time domain can be

reconstructed easily.

6 Simulation example

To demonstrate the validity of the proposed impulse response identification algorithm, in this

section two numerical simulation examples with different conditions are given. In numerical simulation,

identification error e(i), relative error RE and variance σ̂ are defined by

e(i) = g(i) − ĝ(i) (30)
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RE =
‖g(t) − ĝ(t)‖

‖g(t)‖ · 100% (31)

σ̂ =
1

L − 1

L
∑

i=1

[e(i)]2 (32)

where ‖ • ‖ is norm operation defined by ‖X(t)‖ =
∫ +∞

−∞
|X(t)|dt.

Simulation examples adopt the following transfer function in [6].

G(s) =
1.2

(8.3s + 1)(6.2s + 1)
(33)

Example 1. For system output not existing noise, consider the identifying object

Y (s) =
1.2

(8.3s + 1)(6.2s + 1)
U(s) (34)

where input u(t) is Gaussian white noise with 0 mean and variance 1.

Set valid action time of impulse response function tg = 50 seconds. To satisfy data length require-

ment of WPT at the initial scale, the valid action time virtually takes t′g = 56 seconds. Let initial scale

j0 = −1, decomposition layer m = 4, and sampling time of system input and output t = 500 seconds.

Then sampling interval ts = 2−1 = 0.5 second, the length of discrete sequences for g(t) kj0
0 = 112,

and sampling data length L = 1000. By using the proposed impulse response identification algorithm,

identification result ĝ(i) for impulse response function g(i) is showed in Fig. 3.

Let system output u(t) be stochastic bar signal with its amplitude subjected to normal distribution

and its period taking 40 sampling intervals. By using the proposed impulse response identification

algorithm, impulse response identification results are showed in Fig. 4.

In Fig. 3, the variance of identification error e(i) is 1.1676e−6, and the relative error RE = 2.66%,

showing that the identification precision of the proposed algorithm for deterministic system is high. In

Fig. 4, the variance of identification error e(i) is 2.3173e−6, and the relative error RE = 3.10%, showing

that the identification precision of the proposed algorithm for system input being deterministic signal

is also high.

Fig. 3 Impulse response identification results for

input being Gaussian white noise and output not
existing noise

Fig. 4 Impulse response identification results for

input being stochastic bar signal and output not
existing noise

Example 2. For system output existing noise, consider the identifying object

Y (s) =
1.2

(8.3s + 1)(6.2s + 1)
U(s) + λN(s) (35)

where N(s) denotes Gaussian white noise with 0 mean and variance 1, u(t) and n(t) are all white noise,

u(t) is not correlative with n(t), λ is a parameter which limits noise. Let noise-signal-ratio be 18% and

33%, respectively.
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Parameters selection is the same as Example 1. Impulse response identification results for noise-

signal-ration being 18% and 33% are showed in Fig. 5, where variances for identification error e(i) are

σ̂18 = 2.4798e − 6 and σ̂33 = 6.2803e − 6, respectively, and their relative errors are RE18 = 5.17% and

RE33 = 8.32%, respectively. The proposed impulse response identification algorithm for system output

existing strong noise is still of high identification precision.

(a) Noise-signal-ration being 18% (b) Noise-signal-ration being 33%

Fig. 5 Impulse response identification results for system output existing noise

To compared with other impulse response identification algorithm, impulse response identification

results based on correlation analysis algorithm for noise-signal-ratio being 18% and 33% are showed in

Fig. 6, where variances for identification error e(i) are σ̂18 = 1.8038e−5 and σ̂33 = 2.2320e−5, and their

relative errors are RE18 = 14.31% and RE33 = 15.97%. Compared with correlation analysis algorithm,

it is easily seen that the proposed impulse response identification algorithm is of higher identification

precision.

(a) Noise-signal-ration being 18% (b) Noise-signal-ration being 33%

Fig. 6 Impulse response identification based on correlation analysis algorithm for system output existing noise

Now, let sampling data length L = 5600. For Example 2, we adopt correlation analysis algorithm

again. The corresponding impulse response identification results are that, variance σ̂18 = 7.0481e−6 for

identification error e(i) when noise-signal-ratio is 18%, variance σ̂33 = 8.2515e−6 for identification error

e(i) when noise-signal-ratio is 33%, and their relative errors are RE18 = 9.25% and RE33 = 9.84%. The

general impulse response identification result comparison of the proposed impulse response identification

algorithm in this paper and correlation analysis algorithm is listed in Table 1 and Table 2, where initial

scale j0 = −1. Table 1 shows that, to obtain the same identification precision, the sampling data length

required by varying scale orthogonal WPT algorithm is much shorter than that required by correlation

analysis algorithm.
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Table 1 The relative error comparison of the two algorithms

Noise-signal-ratio
Fixed scale orthogonal wavelet packet Correlation analysis Correlation analysis

transform algorithm (L = 1000) algorithm (L = 1000) algorithm (L = 5600)

18% 5.17% 14.31% 9.25%

33% 8.32% 15.97% 9.84%

Table 2 The variance comparison of identification error of the two algorithms

Noise-signal-ratio
Fixed scale orthogonal wavelet packet Correlation analysis Correlation analysis

transform algorithm (L = 1000) algorithm (L = 1000) algorithm (L = 5600)

18% 2.4798e − 6 1.8038e − 5 7.0481e − 6

33% 6.2803e − 6 2.2320e − 5 8.2515e − 6

Furthermore, to know the relationship between identification precision and initial scale j0 selection,

in this paper some numerical simulations, for j0 = 0,−2,−3, and noise-signal-ratio taking 0%, 18% and

33%, are finished. Limited by the space of this paper, all impulse response identification result curves

and their identification error curves are not listed. Only all variances of identification errors and their

relative errors are listed in Table 3 and Table 4, respectively. It indicates that, the identification precision

gets higher as initial scale j0 gets less, and the proposed impulse response identification algorithm, in

general, has a higher identification precision and better capacity of anti-noise interference.

Table 3 The relative error comparison of impulse response identification for different simulation conditions

0% 18% 33%

0 4.79% 5.80% 8.38%

−1 2.66% 5.17% 8.32%

−2 1.70% 4.85% 8.13%

−3 0.83% 4.01% 6.52%

Table 4 The variance comparison of impulse response identification errors for different simulation conditions

0% 18% 33%

0 3.8179e − 6 4.5357e − 6 6.3415e − 6

−1 1.1676e − 6 2.4798e − 6 6.2803e − 6

−2 3.3043e − 7 2.0589e − 6 6.2389e − 6

−3 1.4173e − 7 1.9440e − 6 5.8378e − 6

By the way, compared with the impulse response identification algorithm based on fixed scale

orthogonal WPT presented in [3], the impulse response identification algorithm proposed in this paper

has the almost same identification precision as the algorithm presented in [3], however, the most virtues

of the algorithm proposed in this paper lie in that, according to the identified orthogonal WPT coeffi-

cients, we can directly obtain the frequency distribution attributes of the identifying impulse response

function in some specific frequency bands.

7 Conclusion

A new impulse response identification algorithm based on the varying scale orthogonal WPT

is proposed successfully. Simulation results show that the proposed impulse response identification

algorithm has better capacity for trailing the changes of system dynamic behavior and for anti-noise

interference, and that compared with correlation analysis algorithm, for same identification precision,

the sampling data length required by varying scale orthogonal WPT algorithm is much shorter than

that required by correlation analysis algorithm. Furthermore, the identified WPT coefficients of impulse

response g(t) have specific physical meaning, and can be directly used to accurately analyze system

frequency attributes in some specific frequency bands.
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