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Maneuvering Vehicle Tracking Based on Multi-sensor Fusion1)
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Abstract Maneuvering targets tracking is a fundamental task in intelligent vehicle research. This
paper focuses on the problem of fusion between radar and image sensors in targets tracking. In
order to improve positioning accuracy and narrow down the image working area, a novel method
that integrates radar filter with image intensity is proposed to establish an adaptive vision window.
A weighted Hausdorff distance is introduced to define the functional relationship between image and
model projection, and a modified simulated annealing algorithm is used to find optimum orientation
parameter. Furthermore, the global state is estimated, which refers to the distributed data fusion
algorithm. Experiment results show that our method is accurate.
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1 Introduction

The ability to track maneuvering targets is important to an intelligent vehicle navigation system.

A vision sensor can provide wide-angle information and accurate angle measurements, but it is hard

to produce accurate range measurements, which requires considerable computation costs. Radar can

provide reliable longitudinal measurements, but it is hard to find lateral position, therefore it may

easily lose the turning targets. Multi-sensor fusion can achieve synthetic environmental descriptions

by integrating the redundant data from multiple sensors, which would significantly improve tracking

system′s reliability.

The previous related work overlooked the accurate angle measurements of image sensors[1,2], and

the linear model adopted for vehicle moving description was hard to satisfy the complication of real-

world vehicle motion. The paper presents a new tracking method based on radar and image fusion.

An adaptive vision window, which improves accuracy of position and narrows down the working area

of image processing, is established by fusing radar-based estimation and image intensity. Target′s

orientation is obtained via three-dimensional (3D) wire-frame model, improved Hausdorff distance and

simulated annealing algorithm. Finally, data fusion technology is adopted to efficiently track strongly

maneuvering targets by making full use of radar′s accurate range and relative speed measurements, and

image′s accurate angle measurements.

2 System description

In order to satisfy the complicated motion property of the targets, the “bicycle” model is adopted,

which describes the relationship between the rigid body motion of the vehicle and the steering and drive

rates of wheels[3]. The relative kinetic equations denoting the relationship between the tracked vehicle

and the host vehicle are
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ẋr = v · cos θ − vh · cos θh

ẏr = v · sin θ − vh · sin θh

v̇ = a

θ̇ =
v · tanϕ

B
ϕ̇ = b

(1)

where B is the wheel-base length, a and b are the control parameters, xr and yr are the range coordinate

data, v is the velocity of the tracked vehicle, θ is the orientation of the tracked vehicle, ϕ is the

orientation of the front wheel; vh is the velocity of the host vehicle measured by velocity sensor, and θh

is the orientation of the host vehicle measured by angle sensor.

To make full use of the data from radar and image sensor, a fusion framework illustrated in Fig. 1

is proposed:
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Fig. 1 Diagram of the fusion system

3 Vision window

The range information comes from a radar sensor. When the vehicle is not directly ahead, the

radar performance declines. To solve the problem, the paper uses Kalman filter to post-process the

radar sensor′s output, and meanwhile establishes a vision window to “capture” the obstacle by fusing

filter estimation with image intensity.

Given an image, the main factors effecting the tracking accuracy come from three aspects[4]:

intensity segmentation algorithm, window center position, and window size.

A common segmentation method is to set threshold value for the image. The system takes the

most class variance criteria to identify the best threshold value[5].

The target centroid estimation error is mainly produced by the deviation between the window

center and the target centroid. In order to make the former approach to the latter, we use the deviation

as feedback to adjust the position of the window center. The original position of window center is the

estimated position of radar-based filter, and the adjustment is

x0(k + 1) = x0(k) + int{ê(k) + (1 − c)sign[ê(k)]} (2)

where c is the comparison threshold, int is the rounding operator, and sign is the symbolic operator.

x0(k) = (x0(k), y0(k)) is the window center position of the kth step, and ê(k) = [ε̂x(k) ε̂y(k)]T =

[x̂t(k) − x0(k) ŷt(k) − y0(k)]T is the deviation of the step.

The window size is enlarged along with the change of window center position. The original size

is set to be 10 × 10 pixels. Window size (wx, wy) is getting larger as the window center approaches to

the target centroid, satisfying

wx(k + 1) = wx(k) + α · max |i − x0(k)|, wy(k + 1) = wy(k) + β · max |j − y0(k)| (3)

where (i, j) is the target pixel of the studied area. α and β are the weaken factors to limit speed

increment of the window size, which are usually set to 0.15 ∼ 0.35.

To determine the final parameters (x0, y0, wx, wy), a function is established in window w

F (w) =
n

∑

k=1

max
i,j∈w

(Gradi,j , n) (4)

where Gradi,j is the intensity gradient value of pixel (i, j), which can be obtained by gradient operators

such as Sobel; n is the number of sample points.

The parameter set (x0, y0, wx, wy) that maximize F (w) is the result. The processes and the result

of the experiment are illustrated in Fig. 2, in which the two rectangles separately denote the background

Fig. 2 Vision window
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window (bigger one) and the target window, the hollow point denotes the current target centroid, the

solid point denotes the current window center, and the asterisk denotes the final position of the window

center that is almost coincident with the target centroid.

In general traffic scenes, vehicles are constrained to be in contact with the ground plane, and

their height can be neglected, considering that their magnitude is far smaller than that of the distance

between vehicles and cameras. Therefore, targets position can be determined by 3D reconstruction of

window center (x0, y0).

4 Orientation

Orientation is obtained via 3D method. Traditional methods usually involve an initial stage of

obtaining a symbolic description of the image in terms of predefined 2D features, and recognition is

then achieved by making a match between sets of 2D image features and sets of similar 3D features[6,7].

Since the feature extraction and matching process are error-prone and time-consuming, they are hardly

to satisfy practical applications[8]. In the paper, a new modified Hausdorff distance (HD), which

uses dominant points instead of edge maps as features for measuring similarity between image and

model projection, is employed to establish the matching function. The orientation is then achieved by

optimizing the function.

Because it is not necessary for HD to build point-to-point correspondence between the model and

image, HD is more tolerant to perturbations in point location than other techniques[9]. The traditional

HD is sensitive to outlier points. Dubuisson et al. investigated 24 forms of different Hausdorff distances

and indicated the modified Hausdorff distance (MHD)measure had the best performance[10] . In the

paper, MHD is improved and employed to match dominant points rather than binary pixels[11]. The

new modified Hausdorff distance (M2HD) is defined as:

h(T, M) =
1

∑

tj∈T

wtj

∑

tj∈T

wtj
· min

mi∈M
‖tj − mi‖ (5)

where wtj
denotes merit of point tj , and ‖ • ‖ denotes the distance from a point to a line segment.

Since the function is complicatedly nonlinear and multi-variable, the paper uses simulated anneal-

ing algorithm with a mnemon and variant frequency to get the optimum solution[12]. The results are

illustrated in Fig. 3 where “∗” denotes the optimum.

Fig. 3 Orientation searching
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5 Data fusion

Convert (1) into a discrete-time state transition with T as the sampling interval. The state

vector at a time k is defined as x(k) = (xr(k), yr(k), v(k), θ(k), ϕ(k))T, and the control vector as

u(k) = (a(k), b(k))T with the model

a(k) = ā(k)(1 + δq) + δa, b(k) = b̄(k)(1 + δs) + δb (6)

where δa, δb are disturbance errors and δq, δs are multiplicative errors that separately reflect the in-

creased uncertainty in vehicles motion as speed and steer angles change. δa, δb, δq , δs are modeled as

constant, zero mean, uncorrelated white sequences with constant variances, respectively.

The state equation is defined as

x(k + 1) = f(k, x(k), u(k)) + v(k) (7)

where the process noise v(k) is a Gaussian noise vector with zero mean and variance matrix Q(k).

The radar measurement is:

z1(k) = h1(k, x(k)) + w1(k)

h1(k, x(k)) =







r(k) = (x2
r(k) + y2

r(k))1/2

vr(k) = v(k) − vh(k)

γ(k) = tan−1
(

yr(k)
xr(k)

)






(8)

w1(k) = (wr, wvr , wγ)

where measurement noise wr, wvr , wγ are Gaussian white noise whose statistics are (0, σ2
r), (0, σ2

vr
), (0, σ2

γ).

The image measurement is:

z2(k) = H2(k)x(k) + w2(k)

H2(k) =





1 0 0 0 0

0 1 0 0 0

0 0 0 1 0



 (9)

w2(k) = (wxr , wyr , wθ)

where measurement noise wxr , wyr , wθ are Gaussian white noise whose statistics are (0, σ2
xr

), (0, σ2
yr

), (0, σ2
θ).

As for the system described by (7), (8), (9), a distributed data fusion algorithm[13] is adopted to

get the fusion state estimation x̂F (k) and its covariance PF (k) at time k based on global information

x̂F (k) = x̂F (k|k − 1) + PF (k) ·
2

∑

i=1

{P−1
i (k)[x̂i(k) − x̂F (k|k − 1)]} (10)

P
−1
F (k) =

2
∑

i=1

P
−1
i (k) − P

−1
F (k|k − 1) (11)

where x̂F (k|k − 1), PF (k|k − 1) are respectively one-step prediction estimation and error covariance

based on global information, and x̂i(k), Pi(k) are respectively the state estimation and error covariance

for ith (i = 1, 2) sensor based on global information

x̂F (k|k − 1) = f(x̂F (k)) (12)

PF (k|k − 1) = F (k − 1)PF (k − 1) · FT(k − 1) + Q(k) (13)

x̂i(k) = x̂F (k|k − 1) + Ki(k)[zi(k) − Hi(k − 1) · x̂F (k|k − 1)] (14)

Pi(k) = (I − Ki(k)Hi(k − 1)) · PF (k|k − 1) (15)

Ki(k) in (15) is the gain matrix of filter i, i = 1, 2.
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Ki(k) = Pi(k|k − 1)HT
i (k − 1) · (Hi(k − 1)Pi(k|k − 1)HT

i (k − 1) + Ri(k))−1 (16)

In addition, F (k−1) =
∂f
∂x

∣

∣

∣

∣

x = x̂
F

(k − 1)

is the Jacobians matrix of partial derivatives of f (·), H1(k−

1) = ∂h1
∂x

∣

∣

∣

∣

x = x̂
F

(k|k − 1)

is the Jacobians matrix of partial derivatives of h(·), and R1 = diag(σ2
r , σ2

vr
, σ2

γ),

R2 = diag(σ2
xr

, σ2
yr

, σ2
θ) are respectively the measurement noise covariance matrices of sensor 1 and

sensor 2.

6 Tracking experiments

To validate the approach proposed above, a 3D virtual reality is created using Vega as the scene

arranger, and Visual V++6.0 as the development platform. The vehicle first moves with a constant

velocity, and starts to turn after 60th frame when its turning rate and acceleration change at all time.

After 110th frame, the vehicle again enters on the straight-line road.

With data and images from the simulated reality, experiments were taken. The results are shown

in Fig. 4, which indicate that the moving vehicle can be accurately tracked even after a 90-degree turn.

Fig. 4 Tracking results

7 Conclusion

The presented new maneuvering vehicle tracking scheme based on multi-sensor information fu-

sion makes full use of the reliable longitudinal information from radar sensor and the accurate lateral

information from image, and improves significantly the target tracking performance. The position mea-

surement mainly comes from radar, and the lateral error is corrected by integrating image information.

The angle measurement is achieved via improved 3D image matching which can reduce the image pro-

cessing time and improve accuracy in measurement. Data fusion algorithm efficiently synthesizes the

measurements from the two kinds of sensors, and achieves the accurate state estimation of preceding

mobile target. The experiments confirm that the proposed fusion scheme has strong robustness for the

target motion uncertainty.
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