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Abstract The H∞ hybrid estimation problem for linear continuous time-varying systems is in-
vestigated in this paper, where estimated signals are linear combination of state and input. Design
objective requires the worst-case energy gain from disturbance to estimation error be less than a pre-
scribed level. Optimal solution of the hybrid estimation problem is the saddle point of a two-player
zero sum differential game. Based on the differential game approach, necessary and sufficient solvable
conditions for the hybrid estimation problem are provided in terms of solutions to a Riccati diffe-
rential equation. Moreover, one possible estimator is proposed if the solvable conditions are satisfied.
The estimator is characterized by a gain matrix and an output mapping matrix that reflects the
internal relations between the unknown input and output estimation error. Both state and unknown
inputs estimation are realized by the proposed estimator. Thus, the results in this paper are also
capable of dealing with fault diagnosis problems of linear time-varying systems. At last, a numerical
example is provided to illustrate the proposed approach.
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1 Introduction
When estimated signal includes both state and unknown input of the system, estimation problem

is referred to as state and input hybrid estimation (in the following, only hybrid estimation will be
used for brevity). Hybrid estimation is originated from need of practical application and theory[1].
One practical example is load current estimation of uninterruptible power supply (UPS), where load
current is a linear function of capacitor voltage (state) and back electromotive force (unknown input)[2].
From theoretical view point, either state observation (including filtering, smoothing and prediction) or
deconvolution (input estimation) is just a special case of hybrid estimation. Both of the former two
can be treated in the framework of hybrid estimation. Therefore, research on hybrid estimation is
more general. Fault diagnosis is another important related area of hybrid estimation. Scheme of fault
diagnosis can be designed based on hybrid estimation approach since fault signal can be treated as
unknown input.

For the past decade, H∞ optimization-based estimation is an active research area[3∼5]. Differential
game-theory approach is one of the main time-domain approaches since H∞ estimation is a min-max
problem in essential. Differential game-theory approach can directly deduce estimator′s design method
from the performance specification and therefore is a constructive approach. Moreover, the existence
conditions of the proposed estimator are necessary and sufficient to achieve the least conservativeness.
Differential game-theory approach is also capable of dealing with time-varying problems. Banavar and
Speyer[6] first investigated H∞ filtering and smoothing for continuous linear time-varying (LTV) systems
using differential game-theory approach. Latter, discrete differential game-theory approach was applied
to H∞ filtering for discrete LTV systems[7]. Recently, in [8] differential game-theory approach was
considered for discrete H∞ deconvolution, where estimation error was e = Lx−u, i.e., e is the residual
between linear combination of states and unknown input u. Design method of matrix L, however, was
not provided in that paper and their method is uncompleted. Other related research of H∞ hybrid
estimation is introduced in the following. Optimal performance was first presented for continuous LTV
system by differential game-theory approach[9]. Khargonekar et al. gave results on H2/H∞ hybrid
estimation for continuous linear time-invariant (LTI) systems[10]. In [11], H∞ filtering was explored,
where uncertain initial state was deemed as a fictitious extern input and the H∞ filtering was converted
to an equivalent hybrid estimation problem. At last, Cuzzola and Ferrante proposed LMI conditions
for H2 estimation for discrete LTI systems[1]. They also illustrated explicitly the theoretic and practical
sense of hybrid estimation.

Above research on hybrid estimation mostly focused on LTI systems. Basar investigated continu-
ous LTV H∞ hybrid estimation, however, construction of the estimator was not discussed[9]. In view of
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most systems being time-varying in real world, a class of basic hybrid estimation problem – H∞ hybrid
estimation for continuous LTV systems is explored in this paper. Both necessary and sufficient exis-
tence conditions for the hybrid estimator and parameterization design approach was presented based
on differential game-theory approach. Noting that hybrid estimation was also discussed in [9] using
differential game-theory approach, we emphasize that their approach is different from our method since
different quasi-performance is formulated from differential game to LQ control. Moreover, construction
method for the estimator was not provided in [9] as mentioned previously.

2 Problem statement
Let us consider the following LTV system Σ1

{

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = 0

y(t) = C(t)x(t) + D(t)u(t) + v(t)
(1)

where x ∈ <n is state vector, y ∈ <m is measured output, u ∈ <p is unknown input, v ∈ <q is
measurement noise, matrices A, B, C, and D are time-varying parameter matrices with appropriate
dimensions. Estimated signal z ∈ <r is described as

z(t) = Lx(t)x(t) + Lu(t)u(t) (2)

where Lx and Lu are predefined parameter matrices. From the form of signal z, we can define three
classes of estimation problems as: 1) Lx = 0 corresponds to deconvolution; 2) Lu = 0 corresponds
to state observation; 3) Lx 6= 0 and Lu 6= 0 corresponds to hybrid estimation. It is seen that either
deconvolution or state observation is a special case of hybrid estimation. By (2) estimation of signal z

has encompassed fault information if u is fault. Scheme of fault diagnosis can then be designed based
on hybrid estimation.

Object of H∞ hybrid estimation. Considering system (1), (2) and given by measured output
y, design estimator = to reconstruct signal z satisfying the following L2 induced norm performance
index

sup
u, v∈L2

‖z − ẑ‖2
[0,T ]

‖u‖2
[0,T ] + ‖v‖2

[0,T ]

< γ2 (3)

where ‖p‖2
[0,T ] denotes L2 norm. For a vector p, the relation ‖p‖2

[0,T ] =
∫ T

0
pT(t)p(t)dt holds, ẑ is the

estimate, γ > 0 is a prescribed scalar.

3 Main results of H∞ hybrid estimation
By (3) and output equation in (1), a new cost function is defined as

J(u, y, ẑ) = ‖z − ẑ‖2
[0,T ] − γ2b‖u‖2

[0,T ] + ‖y − Cx − Du‖2
[0,T ]c (4)

H∞ hybrid estimation is then equivalent to the following ‘minmax’ problem

inf
ẑ

sup
y

sup
u

J(u, y, ẑ) (5)

This is a two-player zero sum differential game, where disturbances u, y and estimator ẑ are the two
opponents. The former try to make performance function J maximize and the latter acts counter. By
differential game theory, the optimal solution to H∞ hybrid estimation is exactly the saddle point of
the differential game (u∗, y∗, ẑ∗).

J(u, y, ẑ∗) 6 J(u∗, y∗, ẑ∗) 6 J(u∗, y∗, ẑ) (6)

For notation compact, define two coefficient matrices, the estimator′s gain matrix and output mapping
matrix as follows:

∆ = γ2(I + DTD) − LT
u Lu, F = γ2CTD − LT

x Lu

K = (γ2QCT + BDT)(I + DDT)−1, H = LuDT(I + DDT)−1

Theorem 1. (Continuous LTV H∞ hybrid estimation on finite horizon)
Consider continuous LTV system (1), (2) and performance (3) on finite horizon [0, T ]. Given a

scalar γ > 0, H∞ hybrid estimation is solvable if and only if there exists symmetric matrix function
Q(t), ∀t ∈ [0, T ] such that the following conditions hold:

γ2(I + DTD) − LT
uLu > 0 (7)
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Q̇ = (A−B∆−1FT)Q+Q(A−B∆−1FT)T−Q(γ2CTC−LT
x Lx−F∆−1FT)Q+B∆−1BT, Q(0) = 0 (8)

If H∞ hybrid estimation is solvable, one possible H∞ suboptimal hybrid estimator satisfying perfor-
mance (3) is given by

{ ˙̂x = Ax̂ + K(y − Cx̂), x̂(0) = 0

ẑ = Lxx̂ + H(y − Cx̂)
(9)

Remark 1. Define signal ẑx = Lxx̂ and ẑu = H(y − Cx̂). From the output equation in (9), we
can obtain

ẑ = ẑx + ẑu

i.e., hybrid estimated signal ẑ is made up of two parts including state observation ẑx and unknown
input estimation part ẑu. Thus, the estimator (9) can realize state and unknown input estimation
simultaneously.

In Theorem 1, the existence conditions of H∞ hybrid estimator are equivalent to the solvability of
Riccati differential equation (RDE) (8). The state equation of H∞ hybrid estimator owns an observer
structure and its gain matrix can be constructed from solution to RDE. On the other hand, state
observation part Lxx̂ is included in the output equation of the estimator. All above conclusions are
consistent with those on standard H∞ filtering[3]. Additionally, inequality (7) is a new added constraint
due to deconvolution part in H∞ hybrid estimation. Parameter matrices to describe information on
unknown input, D and Lu, restrict the rang of minimum which the disturbance attenuation level γ can
attain. Dynamics of H∞ hybrid estimator (9) is completely characterized by gain matrix K and output
mapping matrix H which reflects the linear mapping relation from output estimation error (innovation)
y−Cx̂ to unknown input. At every moment, the output estimation error is used to update the state of
the estimator and to provide unknown input estimation through output mapping matrix simultaneously.

From Theorem 1, it is easy to draw conclusions on H∞ filtering and deconvolution. In case of
standard H∞ filtering (Lu = 0 and D = 0), let P = γ2Q hold. It is easy to verify that Theorem 1 is
consistent with standard H∞ filtering theorem[3]. In case of H∞ deconvolution (Lx = 0), condition (7)
in Theorem 1 is kept, but RDE (8) is reduced to

Q̇ = (A−γ2B∆−1DTC)Q+Q(A−γ2B∆−1DTC)T−Q(γ2CTC−γ4CTD∆−1DTC)Q+B∆−1BT (10)

H∞ suboptimal deconvolution filter is given by
{ ˙̂x = Ax̂ + K(y − Cx̂), x̂(0) = 0

ẑ = H(y − Cx̂)
(11)

The physical meaning of output mapping matrix H is clearer in deconvolution filter (11), i.e., it just
reflects the linear mapping relation from output estimation error y − Cx̂ to the unknown input.

4 Differential game theory solution to H∞ hybrid estimation
Proof of Theorem 1.
Step 1. To seek optimal solution u∗ of u.
According to performance (4), define a new cost function as

L(u, y, ẑ) = ‖z − ẑ‖2 − γ2b‖u‖2 + ‖y − Cx − Du‖2c (12)

where ‖ ‖ stands for Euclidian norm. For any vector p, relation ‖p‖ = (pTp)1/2 holds.
The Hamilton function is

H(u, y, ẑ, λ) =
1

2
L(u, y, ẑ) + λ

T(Ax + Bu) (13)

The first order necessary conditions are
{

λ̇ = −Hx

0 = Hu

⇒

{

λ̇ = (γ2CTC − LT
x Lx)x + Fu + LT

x ẑ − γ2CTy − ATλ

0 = −FTx − ∆u + γ2DTy − LT
u ẑ + BTλ

(14)

The Border condition is
λ(T ) = 0 (15)

One necessary condition for existence of saddle point is given by

∆ > 0 (16)
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It follows from (14) that
u

∗ = ∆−1(BT
λ − FT

x + γ2DT
y − LT

u ẑ) (17)

Substituting u∗ into (1) and (14), we obtain the following Hamilton accompany system
[

ẋ

λ̇

]

=

[

A − B∆−1FT B∆−1BT

γ2CTC − LT
x Lx − F∆−1FT −AT + F∆−1BT

] [

x

λ

]

+

[

B∆−1(γ2DTy − LT
u ẑ)

F∆−1(γ2DTy − LT
u ẑ) + (Lxẑ − γ2CTy)

]

(18)

The above equation is a linear two-point boundary value problem (TPBVP), whose solution is

x
∗ = x̂ + Qλ (19)

Setting x̂(0) = 0, the border condition Q(0) = 0 of RDE is then obvious. Taking differentiation in both
sides of (19) and noting (18), we have the following equation
{ ˙̂x = Ax̂ + γ2[(B − QF )∆−1DT + QCT](y − Cx̂) + [(B − QF )∆−1LT

u + QLT
x ](Lxx̂ − ẑ)

Q̇ = (A − B∆−1FT)Q + Q(A − B∆−1FT)T − Q(γ2CTC − LT
x Lx − F∆−1FT)Q + B∆−1BT

(20)

where the lower equation is exactly RDE (8) in Theorem 1.
If (20) is used to solve differential game, the result will be ẑ∗ = Lxx̂, i.e., the optimal solution

of the estimator′s output signal ẑ is only state observation without any information about unknown
input. In order to tackle this difficulty, a key matrix transformation is introduced here.

γ2[(B − QF )∆−1DT + QCT] − [(B − QF )∆−1LT
u + QLT

x ]H = (γ2QCT + BDT)(I + DDT)−1 (21)

Using (21), the upper equation in (20) is equivalent to

˙̂z = Ax̂+(γ2QCT+BDT)(I+DDT)−1(y−Cx̂)+[(B−QF )∆−1LT
u +QLT

x ][H(y−Cx̂)+Lxx̂−ẑ] (22)

By comparing the upper equation in (20) with (22), it is obvious that the matrix transformation (21)
leads to the plus and minus item [(B − QF )∆−1LT

u + QLT
x ]H(y − Cx̂) simultaneous in the upper

equation in (20). The final effect is to introduce unknown input estimation part in the estimate ẑ.
Step 2. To seek optimal solution y∗, ẑ∗ of y and ẑ, respectively.
Define ỹ = y −Cx̂, z̃ = H(y − Cx̂) + Lxx̂ − ẑ, and denote L(u∗, y, ẑ) and λ̇ in (18) in the form

of λ, ỹ, z̃. Through a rather involved algebraic operation, we can obtain

∫ T

0

L(u∗, y, ẑ)dt +

∫ T

0

d

dt
(λTQλ)dt = −γ2‖ỹ‖2

M + ‖z̃‖2
N (23)

where M = (I + DDT)−1 and N = (I + Lu∆−1LT
u ). Noting that

∫ T

0
d
dt

(λTQλ)dt is zero, we have

J(u∗, y, ẑ) = −γ2‖y − Cx̂‖2
M + ‖H(y − Cx̂) + Lxx̂ − ẑ‖2

N (24)

After u∗ is determined, the optimal game solution to the next game object min
ẑ

max
y

J(u∗, y, ẑ) is

y
∗ = cx̂, ẑ

∗ = H(y − Cx̂) + Lxx̂ (25,26)

Step 3. To verify (u∗, y∗, ẑ∗) satisfy saddle point condition (6)
It follows from (24)∼(26) and definition of u∗ that

J(u, y, ẑ∗) 6 J(u∗, ŷ∗, ẑ∗) 6 J(u∗, y∗, ẑ) (27)

Finally, substituting (25) and (26) into (20) will lead to estimator (9). By synthesizing RDE in
the necessary condtions (16) and (20), the proof of Theorem 1 is evident. �

5 Numerical example
Let us consider a fault system Σ1 described by (1) and (2), where the parameter matrices of the

system are as follows

A =

[

0 1
−1 −1

]

, B =

[

0
1

]

, C = [3 3], D = 7, Lx = [1 1], Lu = 0.7
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where u denotes the fault signal, v is band-limited white noise with the value of power spectrum being
0.1. The appropriate choice of γ is 1.7. By Theorem 1, we need to compute RDE (9) and its steady-state
solution is Q = diag[0.0017 0.0025]. Next, the gain matrix and output mapping matrix of H∞ hybrid
estimator are constructed from matrix function Q as K = [0.0003 0.1404]T , H = 0.0980. The hybrid
estimator′s output signal ẑ is composed of two parts, i.e., state estimation ẑx = Lxx̂ and unknown
input estimated part ẑu = H(y − Cx̂).

Figs. 1∼6 show the simulation results. Figs. 1 and 2 are waveforms of fault signal u and mea-
surement noise v, respectively. Here, the fault signal is a step function. Waveforms of signals z, ẑ and
(z − ẑ) are shown in Figs. 5 and 6, respectively. It is seen that the proposed H∞ hybrid estimator,
designed by Theorem 1, reconstructed the estimated signal z in a high precision. In essential, the esti-
mation of signal z is realized through estimating state and input respectively. Such a conclusion is clear
from the results of Figs. 3 and 4, which demonstrate that both state observation and input estimation
are preconditions of the hybrid estimation. At last, the proposed estimator can provide exact fault
information in fault diagnosis since it can reconstruct unknown input.

Fig. 1 Fault signal u Fig. 2 Measurement noise v

Fig. 3 State x (solid) and estimation x̂ (dot) Fig. 4 Signal zu (solid) and ẑu (dot)

Fig. 5 Signal z (solid) and ẑ (dot) Fig. 6 Hybrid estimation error z − ẑ
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6 Conclusion
A class of state and input simultaneous estimation problem – hybrid estimation is investigated in

this paper. Based on differential game theory approach, necessary and sufficient solvable conditions for
continuous time-varying H∞ hybrid estimation are proposed in terms of solution to a Riccati differential
equation. One possible suboptimal H∞ hybrid estimator is provided when the solvable conditions are
satisfied. The estimator is characterized by the gain matrix and output mapping matrix, where the
latter reflects the linear mapping relation from the output estimation error to the unknown input.
Simulation results of the numerical example demonstrate the performance of the proposed H∞ hybrid
estimator is superior. With the input estimation ability, one immediate application area of the proposed
estimator is fault diagnosis.

Additionally, same conclusion can be drawn via the bounded real lemma, whose deduction pro-
cedure is simple but only sufficient solvable conditions can be obtained since there exists freedom to
choose the gain matrix. By contrast, these solvable conditions are not only necessary but also sufficient
as shown in Theorem 1.
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