
Vol. 32, No. 2 ACTA AUTOMATICA SINICA March, 2006

The Maximum Principle for Fully Coupled Forward-backward

Stochastic Control System1)

SHI Jing-Tao WU Zhen

(School of Mathematics and System Sciences, Shandong University, Jinan 250100)

(E-mail: shijingtao@sdu.edu.cn)

Abstract The maximum principle for fully coupled forward-backward stochastic control system

in the global form is proved, under the assumption that the forward diffusion coefficient does not

contain the control variable, but the control domain is not necessarily convex.

Key words The maximum principle, fully coupled forward-backward stochastic control system,

spike variation

1 Introduction

It is well known that the maximum principle, the necessary condition of the optimal control,

which is a milestone-like result in the optimal control theory was established for the deterministic control

system by Pontryakin′s group[1] in the 1950′s and 1960′s. Since then, a lot of work has been done on the

forward stochastic control system such as Bensoussan A[2], Bismut J M[3], Kushner H J[4], Peng S[5] etc.

Peng[6] firstly studied one kind of forward-backward stochastic control system which had the economic

background and could be used to study the recursive utility problem in the mathematical finance. He

obtained the maximum principle for this kind of control system with the control domain being convex.

And then Xu[7] studied the non-convex control domain case and obtained the corresponding maximum

principle. But he assumed that the diffusion coefficient in the forward control system does not contain

the control variable.

However, the forward-backward control system they studied is not fully coupled, that is, their

forward system does not contain the backward state variables. As for the fully coupled forward-backward

stochastic control systems, it is difficult to ensure the existence and uniqueness of the solution with

an arbitrarily fixed long time duration for a given admissible control. To overcome this difficulty,

we need the result of the fully coupled forward-backward stochastic differential equations (FBSDE in

short). Using partial differential equations method, Ma J, Protter and Yong J[8] obtained the existence

and uniqueness of FBSDE. But they required the forward stochastic differential equations to be non-

degenerate and the coefficients not to be randomly disturbed. Hu Y and Peng S[9] proved the existence

and uniqueness of solution to FBSDE when the forward and backward variables had the same dimensions

under some monotonic assumptions. Peng and Wu[10] extended their result to different dimensional

FBSDE and weakened the monotonic assumptions so that the results could be used widely. In this

paper we use the result in [10] to overcome the above difficulty we mentioned.

Another difficulty to get the maximum principle for the fully coupled forward-backward stochastic

control system with non-convex control domain is how to use the spike variational method for the

variational equations with enough higher estimate order and use the duality technique for the adjoint

equations. In our paper we use the result of FBSDE to ensure the existence and uniqueness of the

solution to the adjoint forward-backward stochastic differential equations which are obtained by using

duality technique to the variational equation. And also we use the technique of FBSDE to obtain the

estimate for the solution of the variational equations and then for the difference between the solution

of the perturbed state equations with the sum of the solution of the optimal state equations and the

variational equations with enough higher order.
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Under the assumption that the forward diffusion coefficient does not contain the control variable

we obtain in our paper the maximum principle for the fully coupled forward-backward stochastic control

system with non-convex control domain. We hope our results can have some applications in practice

such as in mathematical finance.

This paper is organized as follows. In section 2, we state the problem and our main assumptions.

In section 3, we study the variational equations and the variational inequality. In section 4, we obtain

the maximum principle in the global form for the fully coupled forward-backward stochastic control

system.

2 Statement of the problem

Let (Ω ,F , P ) be a probability space with filtration {Ft} and (Bt)t>0 be a Rd-valued standard

Brownian motion. We assume Ft
.
= σ{(Bs), 0 6 s 6 t} and consider the following fully coupled

forward-backward stochastic control system:8>><>>: dx(t) = b(t,x(t), y(t),z(t), v(t))dt + σ(t,x(t),y(t),z(t))dBt

−dy(t) = f(t, x(t),y(t),z(t),v(t))dt − z(t)dBt, 0 6 t 6 T

x(0) = x0, y(T ) = h(x(T ))

(1)

where (x(·), y(·), z(·)) ∈ Rn ×Rm ×Rm×d, x0 ∈ Rn, T > 0, b : [0, T ]×Rn ×Rm ×Rm×d ×Rk −→ Rn,

σ : [0, T ] × Rn × Rm × Rm×d −→ Rn×d, f : [0, T ] × Rn × Rm × Rm×d × Rk −→ Rm, h : Rn −→ Rm.

Let U be a nonempty subset of Rk. We define the admissible control set Uad
.
= {v(·) ∈ M2(0, T ; Rk);

v(t) ∈ U , 0 6 t 6 T, a.e., a.s.}.

Our optimal control problem is to minimize the cost function:

J(v(·))
.
= E[

Z T

0

l(t, x(t),y(t),z(t), v(t))dt + Φ(x(T )) + γ(y(0))] (2)

over Uad, where l : [0, T ] × Rn × Rm × Rm×d × Rk −→ R,Φ : Rn −→ R, γ : Rm −→ R.

That is to say, we want to find a u(·), such that

J(u(·)) = inf
v(·)∈Uad

J(v(·)) (3)

An admissible control u(·) is called an optimal control if it attains the minimum. (1) is called the state

equation, the solution (x(·), y(·), z(·)) corresponding to u(·) is called the optimal trajectory.

We are given an m × n full-rank matrix G and the notations:

λ =

0BB� x

y

z

1CCA , A(t, λ) =

0BB� −Gτf

Gb

Gσ

1CCA (t,λ)

where Gλ = (Gσ1, Gσ2, . . . , Gσd). We use the usual inner product 〈·, ·〉 and Euclidean norm | · | in

Rn, Rm, and Rm×d. We assume that

H1:
8>>>><>>>>: i) A(t,λ) is uniformly Lipschitz with repect to λ

ii) for each λ ∈ Rn+m+m×d, A(t,λ) ∈ M2(0, T ;Rn+m+m×d), t ∈ [0, T ]

iii) h(x) is uniformly Lipschitz with repect to x ∈ Rn

iv) for x ∈ Rn, h(x) ∈ L2(Ω ,FT , P ; Rn)

The following monotonic conditions were firstly introduced in [10], and is the necessary assumption in

this paper.

H2: 〈A(t,λ) − A(t, λ̄), λ − λ̄〉 6 −β1| Gx̂ |2 − β2(| G
τ
ŷ |2 + | G

τ
ẑ |2)

〈h(x) − h(x̄), G(x − x̄)〉 > µ1| Gx̂ |2
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or

H′
2: 〈A(t,λ) − A(t, λ̄), λ − λ̄〉 > β1| Gx̂ |2 + β2(| G

τ
ŷ |2 + | G

τ
ẑ |2)

〈h(x) − h(x̄), G(x − x̄)〉 6 −µ1| Gx̂ |2

∀λ = (x, y, z), λ̄ = (x̄, ȳ, z̄), x̂ = x − x̄, ŷ = y − ȳ, ẑ = z − z̄

where β1, β2, µ1 are nonnegative constants with β1 + β2 > 0, β2 + µ1 > 0. Moreover, we have β1 >

0, µ1 > 0 (resp. β2 > 0), when m > n (resp. m < n).

Lemma 1. For any given admissible control u(·), we assume H1 and H2 (or H′
2) hold. Then

equation (1) has the unique adapted solution (x(·), y(·), z(·)) ∈ M2(0, T ; Rn+m+m×d).

The proof under assumptions H1 and H2 was given in [10]. The proof under assumptions H1 and

H′
2 is similar. We also assume:

H3:
8>>>><>>>>: i) b, λ, f, h, l,Φ, γ are continuously differentiable

ii) the derivatives of b, λ, f, h are bounded

iii) the derivatives of l are bounded by C(1+ | x | + | y | + | z | + | v |)

iv) the derivatives of Φ and γ are bounded by C(1+ | x |) and C(1+ | y |), respectively

3 Variational equations and variational inequality

Suppose (u(·), x(·), y(·), z(·)) is the solution to our optimal control problem. We introduce the

spike variation with respect to u(·) as follows:

u
ε(t)

.
=

(
v, if τ 6 t 6 τ + ε

u(t), otherwise
(4)

where ε > 0 is sufficiently small, v ∈ U is an Fτ− measurable random variable, and sup
ω∈Ω

| v(ω) |< +∞,

0 6 t 6 T .

Suppose (xε(·), yε(·), zε(·)) is the trajectory of (1) corresponding to uε(·). We introduce the

following variational equations:8>><>>: dx1(t)=[bxx1(t)+byy1(t) + bzz1(t) + b(uε(t)) − b(u(t))]dt+[λxx1(t) + λyy1(t) + λzz1(t)]dBt

−dy1(t) = [fxx1(t) + fyy1(t) + fzz1(t) + f(uε(t)) − f(u(t))]dt − z1(t)dBt, 0 6 t 6 T

x1(0) = 0, y1(T ) = hx(x(T ))x1(T )

(5)

For convenience, we use the following notations gx = gx(t,x(t), y(t),z(t), u(t)), g(uε(t)) = g(t,x(t),y(t),

z(t),uε(t)), g(u(t)) = g(t,x(t),y(t),z(t), u(t)), g = b, σ, f, l, respectively.

It is easy to know that there exists a unique adapted solution (x1(t), y1(t), z1(t)) ∈ Rn × Rm ×

Rm×d, 0 6 t 6 T , satisfying the variational (5).

We want to give the estimate for the solution of the variational (5). For this we give one result.

Lemma 2. For the following stochastic differential equations(
dx̃t = (Atx̃t + at)dt + (Ctx̃t + bt)dBt, 0 6 t 6 T

x̃0 = 0

A., C . ∈ L∞(0, T ; Rn×n), a., b. ∈ L2(0, T ;Rn), there exists a constant K1, such that the unique solution

satisfies

E[ sup
06t6T

| x̃t |
2] 6 K1(E

Z T

0

| as |2 ds + E

Z T

0

| bs |2 ds) (6)

For the following backward stochastic differential equation:(
−dỹt = (Dtỹt + Etz̃t + F t)dt − z̃tdBt, 0 6 t 6 T

ỹT = ξ
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where D., E. ∈ L∞(0, T ; Rm×m), F . ∈ L2(0, T ;Rm), its adapted solution (ỹ., z̃.) exists uniquely. And

also there exists a constant K2, such that

E[ sup
06t6T

| ỹt |
2] 6 K2(E

Z T

0

| z̃s |2 ds + E

Z T

0

| F s |2 ds + E | ξ |2) (7)

Proof. It can be easily proved by B-D-G inequality and the Gronwall′s inequality. �

Then we first have

Lemma 3. We assume H1, H2, and H3 hold. Then

sup
06t6T

E | y
1(t) |26 Cε, E

Z T

0

| z
1(t) |2 dt 6 Cε (8)

E[ sup
06t6T

| x
1(t) |2] 6 Cε, E[ sup

06t6T

| y
1(t) |2] 6 Cε (9)

Proof. Using Itô formula to 〈Gx1(t), y1(t)〉, we get

E〈hx(x(T ))x1(T ),Gx
1(T )〉 = E

Z T

0

[〈G(bxx
1(t) + byy

1(t) + bzz
1(t)), y1(t)〉−

〈Gτ (fxx
1(t) + fyy

1(t) + fzz
1(t)),x1(t)〉 + 〈Gτ (σxx

1(t) + σyy
1(t) + σzz

1(t)), z1(t)〉]dt−

E

Z T

0

〈Gτ (f(uε) − f(u)), x1(t)〉dt + E

Z T

0

〈G(b(uε) − b(u)), y1(t)〉dt

From the monotonic conditions H2, we get

µ1E |Gx
1(T ) |2 +β1E

Z T

0

| Gx
1(t) |2 dt + β2E

Z T

0

(| Gy
1(t) |2 + | Gz

1(t) |2)dt 6

E

Z T

0

〈G(b(uε) − b(u)), y1(t)〉dt − E

Z T

0

〈Gτ (f(uε) − f(u)), x1(t)〉dt (10)

Using similar technique in [7], we can get the conclusion for the cases m > n and m 6 n, respectively.

�

However, the order of the estimate for (x1(·), y1(·), z1(·)) is too low to get the variational inequal-

ity. We need to give a more elaborate estimate using the technique of FBSDE again.

Lemma 4. We assume H1, H2, and H3 hold. Then we have

E

Z T

0

| x
1(t) |2 dt 6 Cε

3

2 (11)

E

Z T

0

| y
1(t) |2 dt 6 Cε

3

2 (12)

E

Z T

0

| z
1(t) |2 dt 6 Cε

3

2 (13)

Proof. By (10), we have

µ1E | Gx
1(T ) |2 +β1E

Z T

0

| Gx
1(t) |2 dt + β2E

Z T

0

(| G
τ
y

1(t) |2 + | G
τ
z

1(t) |2)dt 6

E

Z T

0

〈G(b(uε) − b(u)), y1(t)〉dt − E

Z T

0

〈Gτ (f(uε) − f(u)), x1(t)〉dt 6

E[ sup
06t6T

| x
1(t) |

Z T

0

| G
τ (f(uε) − f(u)) | dt] + E[ sup

06t6T

| y
1(t) |

Z T

0

| G(b(uε) − b(u)) | dt] 6

[E( sup
06t6T

| x
1(t) |2)]

1

2 [E(

Z T

0

| G
τ (f(uε) − f(u)) | dt)2)]

1

2 +
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[E( sup
06t6T

| y
1(t) |2)]

1

2 [E(

Z T

0

| G(b(uε) − b(u)) | dt)2)]
1

2 6 Cε
3

2

In the case of m > n, β1 > 0, β2 > 0 and µ1 > 0, we have

µ1E | Gx
1(T ) |2 +β1E

Z T

0

| Gx
1(t) |2 dt 6 Cε

3

2

Thus (11) is obtained. Using the method in Lemma 3, we can prove (12) and (13).

In the case of m < n, β1 > 0, β2 > 0 and µ1 > 0,

β2E

Z T

0

(| G
τ
y

1(t) |2 + | G
τ
z

1(t) |2)dt 6 Cε
3

2

so (12) and (13) are obtained. From (5), we have

E | x
1(t) |2=E{

Z t

0

[bxx
1(s) + byy

1(s) + bzz
1(s) + b(uε(s)) − b(u(s))]ds+Z t

0

[σxx
1(s) + σyy

1(s) + σzz
1(s)]dBs}

2
6

7[E(

Z T

0

bxx
1(s)ds)2 + E(

Z T

0

byy
1(s)ds)2 + E(

Z T

0

bzz
1(s)ds)2 + E(

Z T

0

σxx
1(s)ds)2+

E(

Z T

0

σyy
1(s)ds)2 + E(

Z T

0

σzz
1(s)ds)2 + E(

Z T

0

(b(uε(s)) − b(u(s)))ds)2] 6

7C(E

Z T

0

| x
1(t) |2 dt + E

Z T

0

| y
1(t) |2 dt + E

Z T

0

| z
1(t) |2 dt) + Cε

2
6

7CE

Z T

0

| x
1(t) |2 dt + Cε

3

2

By Gronwall′s inequality, we have E | x1(t) |26 Cε
3

2 , and thus (11) is obtained. �

Now we can give the estimate of the difference between the perturbed state equation solution with

the sum of the optimal state and the variational equation solution.

Lemma 5. We assume H1, H2, and H3 hold. Then we have

sup
06t6T

E | x
ε(t) − x(t) − x

1(t) |26 Cε
3

2 (14)

sup
06t6T

E | y
ε(t) − y(t) − y

1(t) |26 Cε
3

2 (15)

E

Z T

0

| z
ε(t) − z(t) − z

1(t) |2 dt 6 Cε
3

2 (16)

Proof. We haveZ T

0

b(x + x
1
, y + y

1
, z + z

1
, u

ε)ds +

Z T

0

σ(x + x
1
, y + y

1
, z + z

1)dBs =

Z T

0

[b(x, y, z, u
ε)+Z 1

0

bx(x + λx1, y + λy1, z + λz1, u
ε)dλx

1 +

1Z
0

by(x + λx1, y + λy1, z + λz1, u
ε)dλy

1+Z 1

0

bz(x+λx1, y+λy1, z+λz1, u
ε)dλz

1]ds+

Z T

0

[σ(x, y, z)+

Z 1

0

σx(x + λx1, y + λy1, z + λz1)dλx
1+Z 1

0

σy(x + λx1, y + λy1, z + λz1)dλy
1 +

Z 1

0

σz(x + λx1, y + λy1, z + λz1)dλz
1]dBs =Z T

0

b(x, y, z, u)ds +

Z T

0

σ(x, y, z)dBs +

Z T

0

[bxx
1(s) + byy

1(s) + bzz
1(s) + b(uε) − b(u)]ds+
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0

[σxx
1(s) + σyy

1(s) + σzz
1(s)]dBs +

Z T

0

A
ε(s)ds +

Z T

0

B
ε(s)dBs =

x(t) − x0 + x
1(t) +

Z T

0

A
ε(s)ds +

Z T

0

B
ε(s)dBs

where

A
ε(s) =

Z 1

0

[bx(x + λx
1
, y + λy

1
, z + λz

1
, u

ε) − bx]dλx
1 +

Z 1

0

[by(x + λx
1
, y + λy

1
, z+

λz
1
, u

ε) − by]dλy
1 +

Z 1

0

[bz(x + λx
1
, y + λy

1
, z + λz

1
, u

ε) − bz]dλz
1

B
ε(s) =

Z 1

0

[σx(x + λx
1
, y + λy

1
, z + λz

1) − σx]dλx
1 +

Z 1

0

[σy(x + λx
1
, y + λy

1
, z + λz

1)−

σy ]dλy
1 +

Z 1

0

[σz(x + λx
1
, y + λy

1
, z + λz

1) − σz]dλz
1

By Lemma 4 we have

sup
06t6T

E{(

Z T

0

A
ε(s)ds)2 + (

Z T

0

B
ε(s)dBs)

2} 6 Cε
3

2 (17)

and

x
ε(t)−x(t)−x

1(t) =

Z T

0

C
ε(s)(xε−x−x

1)ds+

Z T

0

D
ε(s)(xε−x−x

1)ds+

Z T

0

A
ε(s)ds+

Z T

0

B
ε(s)dBs

(18)

where

C
ε(s) =

Z 1

0

[bx(x + x
1 + λ(xε − x − x

1), y + y
1 + λ(yε − y − y

1), z + z
1 + λ(zε − z − z

1), uε)+

by(x + x
1 + λ(xε − x − x

1), y + y
1 + λ(yε − y − y

1), z + z
1 + λ(zε − z − z

1), uε)+

bz(x + x
1 + λ(xε − x − x

1), y + y
1 + λ(yε − y − y

1), z + z
1 + λ(zε − z − z

1), uε)]dλ

D
ε(s) =

Z 1

0

[σx(x + x
1 + λ(xε − x − x

1), y + y
1 + λ(yε − y − y

1), z + z
1 + λ(zε − z − z

1))+

σy(x + x
1 + λ(xε − x − x

1), y + y
1 + λ(yε − y − y

1), z + z
1 + λ(zε − z − z

1))+

σz(x + x
1 + λ(xε − x − x

1), y + y
1 + λ(yε − y − y

1), z + z
1 + λ(zε − z − z

1))]dλ

Using Gronwall′s inequality, we attain the estimate (14). Noticing that

−

Z T

t

f(x+x
1
, y + y

1
, z + z

1
, u

ε)ds +

Z T

t

(z(s) + z
1(s))dBs =

h(x(T )) + hx(x(T ))x1(T ) − y(t) − y
1(t) −

Z T

t

G
ε(s)ds

where

G
ε(s) =

Z 1

0

[fx(x + λx
1
, y + λy

1
, z + λz

1
, u

ε) − fx]dλx
1 +

Z 1

0

[fy(x + λx
1
, y + λy

1
, z + λz

1
, u

ε)−

fy]dλy
1 +

Z 1

0

[fz(x + λx
1
, y + λy

1
, z + λz

1
, u

ε) − fz]dλz
1

we have

[yε(t) − y(t) − y
1(t)] +

Z T

t

[zε(s) − z(s) − z
1(s)]dBs = h(xε(T ) − h(x(T )) − hx(x(T ))x1(T )+Z T

t

[f(s, xε
, y

ε
, z

ε
, u

ε) − f(x + x
1
, y + y

1
, z + z

1
, u

ε)]ds +

Z T

t

G
ε(s)ds (19)
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And then

E | y
ε(t) − y(t) − y

1(t) |2 +E

Z T

t

| z
ε(s) − z(s) − z

1(s) |2 ds = E{h(xε(T )) − h(x(t))−

hx(x(t))x1(T ) +

Z T

t

[f(s, xε
, y

ε
, z

ε
, u

ε) − f(x + x
1
, y + y

1
, z + z

1
, u

ε)]ds +

Z T

t

G
ε(s)ds}2 =

E{h(xε(T )) − h(x(T ) + x
1(T )) +

Z 1

0

[hx(x(T ) + x
1(T )) − hx(x(T ))]dλx

1(T )+Z T

t

[f(s, xε
, y

ε
, z

ε
, u

ε) − f(x + x
1
, y + y

1
, z + z

1
, u

ε)]ds +

Z T

t

G
ε(s)ds}2

From Lemma 4 and (14), we obtain

sup
06t6T

E(

Z T

t

G
ε(s)ds)2 6 Cε

3

2 , E[h(xε(T ) − h(x(T ) + x
1(T ))]2 6 Cε

3

2

Using the same method in Lemma 3 and Lemma 4, we can get (15) and (16). �

Lemma 6. (variational inequality) We assume H1, H2, and H3 hold; then

E

Z T

0

[lxx
1(t) + lyy

1(t) + lzz
1(t) + l(uε(t))− l(u(t))]dt + E[Φx(x(T ))x1(T )]+ E[γy(y(0))y1(0)] > o(ε)

(20)

Proof. From J(uε(·)) > J(u(·)), we have

E

Z T

0

[l(t, xε(t), yε(t), zε(t),uε(t)) − l(u(t))]dt + E[Φ(xε(T )) − Φ(x(T ))] + E[γ(yε(0) − γ(y(0))] > 0

and

0 6 E

Z T

0

[l(t, xε(t),yε(t), zε(t),uε(t)) − l(t,x + x
1
, y + y

1
, z + z

1
, u

ε)]dt+

E

Z T

0

[l(t, x + x
1
, y + y

1
, z + z

1
, u

ε) − l(u(t))]dt + E[Φ(xε(T )) − Φ(x(T ) + x
1(T ))]+

E[Φ(x(T ) + x
1(T )) − Φ(x(T ))] + E[γ(yε(0)) − γ(y(0) + y

1(0))] + E[γ(y(0) + y
1(0)) − γ(y(0))]

By H3 and Lemma 5, we have

E

Z T

0

[l(t, xε(t),yε(t), zε(t),uε(t)) − l(t,x + x
1
, y + y

1
, z + z

1
, u

ε)]dt+

E[Φ(xε(T )) − Φ(x(T ) + x
1(T ))] + E[γ(yε(0)) − γ(y(0) + y

1(0))] 6 Cε
3

2

and

0 6 E

Z T

0

[l(t, x + x
1
, y + y

1
, z + z

1
, u

ε) − l(u(t))]dt + E[Φ(x(t) + x
1(T )) − Φ(x(t))]+

E[γ(yε(0)) − γ(y(0) + y
1(0))] + Cε

3

2 = E

Z T

0

[l(t, x + x
1
, y + y

1
, z + z

1
, u) − l(u(t))]dt+

E

Z T

0

[l(t, x + x
1
, y + y

1
, z + z

1
, u

ε) − l(t, x + x
1
, y + y

1
, z + z

1
, u)]dt+

E[Φ(x(T ) + x
1(T )) − Φ(x(T ))] + E[γ(yε(0)) − γ(y(0) + y

1(0))]+

Cε
3

2 = E

Z T

0

[lxx
1(t) + lyy

1(t) + lzz
1(t)]dt + E

Z T

0

[l(uε(t)) − l(u(t))]dt+

E

Z T

0

{[lx(uε) − lx]x1 + [ly(uε) − ly]y1 + [lz(u
ε) − lz]z

1}dt + E[Φx(x(T ))x1(T )]+
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E[γy(y(0))y1(0)] + Cε
3

2 = E

Z T

0

[lxx
1(t) + lyy

1(t) + lzz
1(t) + l(uε(t)) − l(u(t))]dt+

E[Φx(x(t))x1(T )] + E[γy(y(0))y1(0)] + o(ε)

The desired variational inequality (20) can be obtained. �

4 The maximum principle in global form

We first introduce the following adjoint equation with respect to the variational (5) using the dual

technique:8>><>>: dp(t) = [fτ
y p(t) − bτ

yq(t) − στ
yk(t) − ly ]dt + [fτ

z p(t) − bτ
zq(t) − στ

z k(t) − lz]dBt

−dq(t) = [−fτ
x p(t) + bτ

xq(t) + στ
xk(t) + lx]dt − k(t)dBt, 0 6 t 6 T

p(0) = −γy(y(0)), q(T ) = −hx(x(t))p(T ) + Φx(x(T ))

(21)

where (p(·), q(·), k(·)) ∈ Rm × Rn × Rn×d. From H3 and the fact that (5) satisfies H1 and H2, we can

easily verify that the adjoint (21) satisfies H1 and H′
2. From Lemma 1, we know that (21) has a unique

solution (p(t),q(t),k(t)), 0 6 t 6 T. We define the Hamilton function as

H(t, x, y, z, v, p, q, k)
.
= 〈q, b(t, x, y, z, v)〉 − 〈p, f(t, x, y, z, v)〉 + 〈k, λ(t, x, y, z)〉 + l(t, x, y, z, v) (22)

where H : [0, T ] × Rn × Rm × Rm×k × Rk × Rm × Rn × Rn×d −→ R. Then we can get the following.

Theorem. (Stochastic Maximum Principle)

We assume H1, H2, and H3 hold. If (u(·), x(·), y(·), z(·)) is the solution to our optimal control

problem and (p(·), q(·), k(·) is the solution to the corresponding adjoint equation (21), then we have

H(t,x(t), y(t), z(t), v, p(t),q(t),k(t)) > H(t, x(t), y(t), z(t), u(t),p(t),q(t),k(t)),∀v ∈ Uad, a.e., a.s.

(23)

and (21) can be written as the following stochastic Hamilton system:8>>>><>>>>: dp(t) = −Hydt − HzdBt

−dq(t) = Hxdt − k(t)dBt, 0 6 t 6 T

p(0) = −γy(y(0))

q(T ) = −hx(x(T ))p(T ) + Φx(x(T ))

(24)

Proof. Using Ito′s formula to 〈p(t), y1(t)〉 + 〈q(t), x1(t)〉 and noticing the variational equation

(5), the adjoint equation (21) and the variational inequality (20), we obtain

o(ε)6E

Z T

0

[lxx
1(t)+lyy

1(t)+lzz
1(t)+l(uε(t)) − l(u(t))]dt + E[Φx(x(T ))x1(T )] + E[γy(y(0))y1(0)] =

E

Z T

0

[H(t,x(t), y(t),z(t), uε(t),p(t),q(t),k(t)) − H(t,x(t), y(t),z(t), u(t), p(t), q(t), k(t))]dt

The maximum principle (23) follows immediately. The Hamilton system (24) is obvious. �

Remark. When there are initial state constraint for the backward state variable and the final

state constraint for the forward state variable, we can also obtain a global maximum principle by using

Ekeland′s variational principle. However, if the diffusion coefficients of the forward system contains

control variable and the control domain is not necessarily convex, we cannot get the maximum principle

for fully coupled forward-backward stochastic control system in the global form. It is still an open

problem.
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