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A Personified Annealing Algorithm for Circles Packing Problem1)
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Abstract Circles packing problem is an NP-hard problem and is difficult to solve. In this paper, a
hybrid search strategy for circles packing problem is discussed. A way of generating new configuration
is presented by simulating the moving of elastic objects, which can avoid the blindness of simulated
annealing search and make iteration process converge fast. Inspired by the life experiences of people,
an effective personified strategy to jump out of local minima is given. Based on the simulated
annealing idea and personification strategy, an effective personified annealing algorithm for circles
packing problem is developed. Numerical experiments on benchmark problem instances show that
the proposed algorithm outperforms the best algorithm in the literature.

Key words Packing problem, simulated annealing algorithm, personification

1 Introduction

Packing problems have found many industrial applications. For example, in wood or glass indus-

tries, rectangular components have to be cut from large sheets of material. In warehousing context,

goods have to be placed on shelves, and a bunch of optical fibers have to be accommodated in a pipe

with perimeter as small as possible. In VLSI floor planning, VLSI has to be laid. These applications can

be formalized as packing problems[1]. The circles packing problem has been shown to be NP-hard[2,3],

it is unlikely that there exists a polynomial time algorithm to solve it optimally. Hence people turn to

nature for wisdom, hoping to obtain heuristic algorithm[4] that is not absolutely rigorous but is of high

speed, high reliability and high efficiency.

Inspired by biology evolution, physical process, social life etc., many good algorithms, especially,

meta-heuristics have been found. So far, genetic algorithm and simulated annealing algorithm (SA)[5,6]

have been widely applied to combinatorial optimization. Especially, some heuristic algorithms were

presented to solve the circles packing problem and some valuable results have been obtained, for exam-

ple, the quasi-physical method[7], quasi-physical and quasi-human method (QuasiPQuasiH)[8,9], SA[10],

genetic algorithm[1,11] , expansion algorithm[12] and hybrid algorithm[13]. Based on the idea of SA and

some personification strategies, a personified annealing algorithm is developed.

2 Mathematical formulation of the problem

Given an empty round plate and N disks of different sizes, where N is a positive integer, we shall

ask if these disks can be packed into the empty round plate without overlapping one another. This

problem is stated more formally as follows.

Fig. 1 A simple coordinate system

Taking the central point of the round plate of ra-

dius R0 as the origin of the two-dimensional Cartesian

coordinate system and (xi, yi) as the coordinates of the

center of the i-th disk of Ri, one asks if there e-

xist a set of real numbers (x1, y1, · · · , xN , yN ), such that
{

√

x2
i + y2

i 6 R0 − Ri
√

(xi − xj)2 + (yi − yj)2 > Ri + Rj

(see Fig. 1). If

there exist such real numbers, then please give them.

Here, i, j = 1, 2, · · · , N , and i 6= j.

Imagine all the N disks to be smooth elastic

solids, and the round plate to be the remaining infi-

nite part after a disk of radius R0 is hollowed out of
the whole two-dimensional infinite elastic solid. Imagine that the N disks are squeezed into the round

plate. As each object has the tendency to restore its shape and size, there occurs the interaction of
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extrusion elastic forces between the solids. Driven by such extrusion elastic forces, a series of movements

will take place. It is possible that the result of the motion is the establishment of a solution to the

problem, with each disk in an appropriate position with respect to another, with no two solids embedded

into each other. By these approaches[7∼9], the circles packing problem can be transformed into an

optimization problem of the potential energy function:

U(X) = U(x1, y1, · · · , xN , yN) =
N

∑

j=1

Uj (1)

where

Uj =
N

∑

i=0,j 6=i

uij , j = 1, 2, · · · , N, uij = d2
ij , i, j = 0, 1, · · · , N, i 6= j

d0i =

{

Ri − R0 +
√

x2
i + y2

i , if
√

x2
i + y2

i > R0 − Ri

0, else

dij =

{

Ri + Rj −
√

(xi − xj)2 + (yi − yj)2, if
√

(xi − xj)2 + (yi − yj)2 < Ri + Rj

0, else

where Uj denotes the extrusion elastic potential energy possessed by disk j, uij denotes the extrusion

elastic potential energy between two smooth elastic objects, d0i denotes the embedding depth between

disk i and the round plate, dij denotes the embedding depth between disk i and disk j. Obviously,

U > 0, dij > 0; dij > 0 signifies that disk i and disk j embed each other, and dij = 0 signifies that two

disks do not embed each other. Find the minimum configuration X∗ = (x∗
1, y

∗
1 , x∗

2, y
∗
2 , · · · , x∗

N , y∗
N ) of

the potential energy function (1). If U(X∗) = 0, then X∗ is one solution to the circles packing problem,

whereas if U(X∗) > 0, then the problem has no solution.

3 Personified annealing algorithm

3.1 The idea of SA

SA introduced by Kirkpatrick[14] is based on the analogy between the annealing of solids and the

solving of large-scale optimization problems. Solutions in a combinatorial optimization problem are

equivalent to the states of a physical system, and the cost of a solution is equivalent to the energy

of a state. In the process of search, SA accepts not only better but also worse neighbor solutions

with a certain probability. The temperature determines the probability of accepting worse solutions.

The probability of accepting a worse solution is large at higher temperatures. As the value of the

temperature declines, the probability of accepting worse solutions also decreases as well. This feature

implies that SA, in contrast to other local search algorithms, has more opportunities to escape from

a local minimum trap. The annealing process first raises the temperature to a sufficiently high level

so that the system can be transferred to all possible states. The temperature is then maintained for a

certain time at each level and is gradually decreased until the desired state is attained.

Generally, one can use the annealing procedure as follows to obtain a solution for a optimization

problem[14∼17].

1) Generate an initial configuration X, obtain an initial temperature T0

2) Generate a new configuration X ′, let ∆U = U(X ′) − U(X)

3) If ∆U < 0, go to 4); otherwise, if exp(−∆U/T0) 6 random(0, 1), go to 2)

4) X = X ′, U(X) = U(X ′)

5) Check whether energy U is in equilibrium at temperature T0, if it is not equilibrium, go to 2)

6) T0 = αT0, if the annealing process is over, then stop; otherwise, go to 2).

The above procedure is a formal statement of SA, it must consider actual problem when SA is

applied.

3.2 The way of generating a new configuration

Due to the initial configuration is generated randomly, there must exist the extrusion among the

disks. According to the idea of quasi-physical, these disks are looked as elastic objects. If there exist

extrusion between different objects, they must have elastic forces acted on them, so they will move with



592 ACTA AUTOMATICA SINICA Vol. 31

the action of elastic forces. As shown in Fig. 2 disk i and the plate embed each other, disk i and disk j

embed each other (see Fig. 2). Disk j will move along the direction of from i to j with the reaction of

Fig. 2 An example for generation configuration

elastic forces. How far on earth it moves depends on

its embedding depth dij . If disk i keeps actionless,

then disk j moves its depth dij until it does not em-

bed with disk i. If disk j keeps actionless, then the

plate makes disk i move d0i along the direction of

from i to 0 and disk j makes disk i move its depth dij

along the direction of from j to i. If the embedding

depth is considered as a vector, then the placement

of disk i is the sum of all its embedding depth vec-

tors. The placement size of disk i is the module of

the placement of disk i, its direction is the direction

of the vector sum of all elastic forces acted on it. The

moving distance can be calculated by the projection

of all embedding depth vectors in axes x and y. In

particular, it can be calculated as follows.

Firstly, disk j makes disk i move the following distance

xi − xj

dxj

=
Dij

dij

⇒ dxj =
xi − xj

Dij

dij ,
yi − yj

dyj

=
Dij

dij

⇒ dyj =
yi − yj

Dij

dij

where Dij denotes the distance from the center of disk i to that of disk j, dij is the same as the previous

definition, dxij is the projection of dij in the horizontal axis x, dyij is the projection of dij in the vertical

axis y. It is noted that dxij and dyij are not distance, so they may be positive or negative. Similarly,

dx0 = −
xi

D0i

d0i, dy0 =
−yi

D0i

d0i

where D0i denotes the distance from the center of the plate to the center of disk i, d0i is the same as

the previous definition, dxi0 is the projection of d0i in the horizontal axis, dyi0 is the projection of d0i

in the vertical axis. Therefore, the next position of disk i is

x′
i = xi + dxj + dx0, y′

i = yi + dyj + dy0

Namely, if the previous configuration is X = (x1, y1, · · · , xi, yi, · · · , xN , yN ), then the new configuration

is X ′ = (x1, y1, · · · , x
′
i, y

′
i, · · · , xN , yN ). Although the example of Fig. 2 is simple, it gives the way of

calculating a new configuration. For complex cases, it can be calculated similarly. For example, if

the number of disks embedding one another is more than two, as long as disk i is selected, its new

configuration can be calculated by the above way. As to how to choose disk i, one can begin with small

radius of disk and choose the disks in return. It is noted that other disks and the plate do not move

when calculating the new position of disk i. With the help of the configuration X, a configuration

X ′ is obtained by simulating the physical moving process of circle i. It is noted that whether disk i

can get to a new position depends on the probably mechanism of SA. According to above statements,

new configuration is generated consciously, the range of search is significantly reduced. Therefore, this

way enlightened by physical process can avoid blind search to some extent, and it allows the iterative

process to converge fast and enhances the efficiency of computing.

3.3 Personification strategy

Since SA costs too much time in order to obtain a high quality solution, the running time beyond

endurance makes SA infeasible as the problem scale increases. The performance of SA is significantly

impacted by the choice of parameters, so these parameters should be selected rationally by referring

to [6,10]. In this paper, T0 = N
20 , α = 0.92 the initial temperature can be adjusted with the change of

problem scale.

For SA, when the temperature T0 tends to zero at the end of the process, the probability of

accepting worse neighboring configurations is approximately zero. In that case, SA loses its feature to

accept worse configurations, thereby becoming identical to other local search algorithms. For example,



No. 4 ZHANG De-Fu et al.: A Personified Annealing Algorithm for Circles Packing Problem 593

from Fig. 3, two small disks crush together, when the temperature decreases to some extent, it is very

difficult to jump out of local minimum. In addition, the way of generating X ′ may often lead SA to

getting stuck in a local optimum during the course of execution. Under this circumstance, the promising

approach is to put forward some good heuristic strategies for jumping out of the local minimum trap by

taking the calculating point out of the local minimum and place it in a position with better prospects.

Then a new SA process can be carried out.

Fig. 3 An example of the trap

This strategy of “jumping out of the trap” can be obtained by observing and learning from the

social and nature phenomena and is therefore called personification strategy.

In daily life, the main conflict is often solved with priority in certain problems. When some objects

are packed into a trunk, the large ones are packed first, and then small ones. Otherwise, it is possible

that the large objects cannot be packed into the trunk, because small ones have occupied the needed

space of the large objects. Under this circumstance, the positions of small ones have to be adjusted

to find a better layout. Namely, one small object is moved away from among small objects huddled

together. As in Fig. 3, disks which embed with others are considered to have conflicts with others.

Disks with the maximum energy function value have maximum conflict, so they are given priority, for

example, the two big disks and the two small disks. Intuitively, if one small disk is selected from the

two small ones, and put into the left-top position of the plate, then the conflict can be solved quickly.

Maybe the chance that solves conflict successfully does not always occur, however, choosing a small

disk from the two small disks has more chance to jump out of local minimum than choosing a big disk

from the two big disks. All of these inspire us to obtain the following heuristic strategies:

When getting stuck, the disk with maximum relative potential energy (RU(i)) can be picked out

and randomly placed in the plate, where RU(i) = Ui/Ri. According to this formulation, for disks with

same maximum potential energy, the smaller the radius of the disk, the bigger its relative potential

energy is. Thus the smaller disks with the same maximum potential energy have more chances to jump

out of a local minimum.

Combining the idea of SA and personification strategy, a personified annealing algorithm is deve-

loped:

1) Running SA(), if U < 10−6, then go to 3)

2) Under current configuration, the disk with maximum relative potential energy RU(i) is picked

out and randomly placed in the plate, go to 1)

3) Stop.

It is noted that the temperature is very low when the search process gets stuck, the strategy of

enhancing temperature[14] must be adopted in order to jump out of a local minimum because when the

temperature is high, the search process has more chances to jump out of a local minimum.

4 Computational results

In order to verify the performance of the personified annealing (PA), PA is compared with

QuasiPQuasiH. Both algorithms have been implemented with C language on a Pentium 4 to per-

form large amounts of calculation with nine problem instances taken from [8, 9, 15]. The nine problem

instances (P ) below, which include packing equal disks and unequal disks, hard and easy problem in-

stances, are typical representatives. For each instance, 5 times of trial calculation have been executed
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with each algorithm because the initial solution of problem instance is generated randomly. In addition,

each problem instance has the optimization solution objectively, so the running time is recorded when

the optimization solution is found.

The computation results of both algorithms are shown in Table 1, and the geometric morphologies

of the solutions are shown in Table 2 (the geometric morphologies of the solutions may be different for

different calculation). From the results shown in Table 1, the speed of PA is about eight times that of

QuasiPQuasiH except for problem instances 1,2,6. For rather difficult problem instances, e.g. instance

4, such an increase in speed is especially notable, so PA is feasible and high efficient.

Table 1 Comparisons of PA and QuasiPQuasiH

P N R0 R1, · · · , RN

PA QuasiPQuasiH

The running time and t̄(s) The running time and t̄(s)

1 6 100
R1 = R2 = R3 = 22.4 0.00, 0.00, 0.00 0.00, 0.00, 0.00

R4 = R5 = R6 = 46.4 0.00, 0.00, t̄ = 0.00 0.00, 0.00, t̄=0.00

2 9 241.43
R1 = · · · = R3 = R4 = 100 0.00, 0.05, 0.00 0.11, 0.11, 0.00

R5 = R6 = · · · , R9 = 41.415 0.05, 0.00, t̄=0.02 0.00, 0.05, t̄=0.05

3 17 50
R1 = 25, R2 = 20, R3 = R4 = 15 0.33, 0.16, 0.22 4.56, 4.18, 2.97

R5 = R6 = R7 = 10, R8 = · · · = R17 = 5 0.16, 0.22, t̄=0.22 0.27, 0.22, t̄=2.44

4 17 241.43
R1 = · · · = R4 = 100, R5 = · · · = R9 0.55, 0.55, 1.43 119.29, 169.67, 78.13

= 41.415, R10 = · · · = R17 = 20 0.33, 1.15, t̄ = 0.80 102.8, 0.99, t̄ = 110.18

5 50 159.32 R1 = R2 = · · · = R50 = 20
7.24, 51.9, 5.46 3.13, 93.46, 10.05

57.21, 34.73, t̄ = 31.31 9.95, 120.99, t̄ = 47.52

6 12 215.47
R1 = · · · = R6 = 23.72, R7 · · · R9 0.00, 0.05, 0.00 1.70, 0.99, 0.93

= 48.26, R10 = R11 = R12 = 100 0.00, 0.01, t̄ = 0.012 1.32, 2.14, t̄ = 1.42

7 15 39.37 R1 = 1, Ri+1 = Ri + 1, i = 1, 2, · · · , 14
10.42, 3.53, 7.62 49.95, 47.91, 6.59

31.38, 1.57, t̄ = 10.91 10.44, 9.29, t̄ = 24.84

8 37 135.176 R1 = · · · = R37 = 20
0.00, 0.05, 0.05 0.27, 0.27, 0.11

0.05, 0.05, t̄ = 0.04 0.11, 0.11, t̄ = 0.18

9 61 173.226 R1 = · · · = R61 = 20
0.22, 0.27, 0.27 9.12, 5.99, 6.26

0.22, 0.60, t̄ = 0.32 3.13, 5.77, t̄ = 6.05

Table 2 The geometric morphologies of the solutions

In this paper, the comparisons of PA, quasi-physical method and methods in [3,8] have been

omitted because the running time of the later is longer than that of QuasiPQuasiH[8]. For the case of

equal circles, some results can be found in [6,9], PA also found the optimized geometric morphologies
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of the solutions. Comparing PA with methods in [1,11] is not appropriate because their objectives are

different. The algorithm in [10] was only for study on feasibility and efficiency. What is more, the way

of generating a new configuration was different from PA. The paper tried their methods, but the results

were bad. As to the expansion algorithm[12] , its idea is more novel, but its running time is almost the

same as QuasiPQuasiH, so PA is faster than it.

5 Conclusions

The numerical experiments have shown that PA outperforms one of the best algorithms, so PA

is feasible and high efficient. In addition, PA is easily extendable to packing circles in other bounded

space or other NP-hard problems. PA may be of practical value to the rational layout of the round

objects in the engineering fields. The future work is to find highly efficient algorithm for other NP

problem of even greater practical significance.
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