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Abstract This paper concerns problem of the delay-dependent robust stability and stabilization
for uncertain neutral systems. Some new delay-dependent stability criteria are derived by taking
the relationship between the terms in the Leibniz-Newton formula into account. Free weighting
matrices are given to express the relationship between the terms in the Leibniz-Newton formula and
the new criteria are based on linear matrix inequalities such that the free weighting matrices can be
easily obtained. Moreover, the stability criteria are also used to design the state-feedback controller.
Numerical examples demonstrates that the proposed criteria are effective and are an improvement
over the previous papers.
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1 Introduction

During the last decade, considerable attention has been devoted to the problem of delay-dependent

stability analysis and controller design for retarded and neutral systems[1∼10]. Before 1999, the main

methods on this topic were the standard bounding method and matrix measure and matrix norm,

which led to considerable conservatism[1,3,5,6] . Recently Park presented a new inequality to improve the

standard bounding method and obtained the delay-dependent criteria for systems with time-invariant

delays[2]; and Moon et al. extended Park′s results to a more general form[4]. In addition, Fridman

and Shaked presented a descriptor model transformation method and some more efficient stability

criteria were derived by combining Park and Moon′s inequalities with it[7∼10]. In the derivative of

Lyapunov functional, they used the Leibniz-Newton formula and replaced the term x(t − h) with

x(t) −
∫ t

t−h
ẋ(s)ds in some places, but kept it in other places. For example, in [4], x(t − h) in the

expression 2xT(t)PA1ẋ(t) is replaced with x(t) −
∫ t

t−h
ẋ(s)ds; but not in τ ẋT (t)Zẋ(t). In fact, both

x(t − h) and x(t) −
∫ t

t−h
ẋ(s)ds affect the result, and there must be some relationship between them.

However, the above papers ignored this problem.

In this paper, some new delay-dependent stability criteria that take the relationship between

x(t − h) and x(t) −
∫ t

t−h
ẋ(s)ds into account are presented for neutral systems with time-varying

delays. Some free weighting matrices that express the influences of the terms in the Leibniz-Newton

formula are determined based on linear matrix inequalities (LMIs). Then, the stability criterion can

be extended to the systems with time-varying structured uncertainties. In addition, they are also

applied to the state-feedback controller design to solve the problem of stabilizing the systems. Finally,

some numerical examples demonstrate that the results obtained in this paper are effective and are a

significant improvement over the existing criteria.

2 Notation and preliminaries

Consider a time-delay system Σ

Σ :

{

ẋ(t) − Cẋ(t − τ ) = (A + ∆A(t))x(t) + (Ad + ∆Ad(t))x(t − d(t)) + Bu(t), t > 0

x(t) = φ(t), t ∈ [−r, 0]
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input. The matrices A,Ad, B, C are

constant matrices with appropriate dimensions. The time-varying structured uncertainties are of the
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form

[∆A(t) ∆Ad(t)] = DF (t)[Ea Ead] (2)

where D, Ea, Ead are appropriate dimensional constant matrices and F (t) is an unknown real and

possibly time-varying matrix with Lsbesgue measurable elements satisfying

‖F (t)‖ 6 1, ∀t (3)

The time delay d(t) is a time-varying continues function and satisfies

0 6 d(t) 6 h (4)

and

ḋ(t) 6 µ < 1 (5)

where h, τ and µ are constants and r=max(τ, h). The initial condition φ(t) denotes a continuous

vector-valued initial function of t ∈ [−r, 0]. We are interested in designing a memoryless state-feedback

controller

u(t) = Kx(t) (6)

where K ∈ Rm×n is a constant gain matrix. To obtain results for the system with time-varying

structured uncertainties, the following lemma is needed.

Lemma 1[11]. Given matrices Q = QT, H, E and R = RT > 0 of appropriate dimensions,

Q + HFE + E
T
F

T
H

T
< 0

for all F satisfying FTF 6 R, if and only if there exists some ε > 0 such that

Q + ε
−1

HH
T + εE

T
RE < 0

First, we consider the nominal system Σ0 of Σ, which is described as

Σ0 :

{

ẋ(t) − Cẋ(t − τ ) = Ax(t) + Adx(t − d(t)) + Bu(t), t > 0

x(t) = φ(t), t ∈ [−r, 0]
(7)

3 Stability

In this section, for nominal system Σ0 with u(t) = 0, the relationship between the terms in the

Leibniz-Newton formula is taken into account. Specifically, the term 2[xT(t)N1 + xT(t − d(t))N2 +

ẋT(t)N3 + ẋT(t − τ )N4][x(t) −
∫ t

t−d(t)
ẋ(s)ds − x(t − d(t))], which is equal to zero, is added into the

derivative of Lyapunov functional. The free weighting matrices Nj (j = 1, · · · , 4) are used to indicate

the relationship between the terms in the Leibniz-Newton formula. In addition, they can easily be

determined by solving linear matrix inequalities. Now, the following conclusion for nominal system Σ0

with time-varying delay satisfying (4) and (5) can be derived.

Theorem 1. Given scalars h > 0 and µ < 1, the nominal system Σ0 of Σ with u(t) = 0 and time-

varying delay satisfying (4) and (5) is asymptotically stable for any τ > 0 if there exist P = PT > 0,

Q = QT > 0, R = RT > 0, Z = ZT > 0, X =









X11 X12 X13 X14

XT
12 X22 X23 X24

XT
13 XT

23 X33 X34

XT
14 XT

24 XT
34 X44









> 0, and any appropriate

dimensional matrices Nj (j = 1, · · · , 4) and Tj (j = 1, · · · , 4) such that the following LMIs (8) and (9)

hold

Ξ =









Ξ11 Ξ12 Ξ13 Ξ14

Ξ
T
12 Ξ22 Ξ23 Ξ24

Ξ
T
13 Ξ

T
23 Ξ33 Ξ34

Ξ
T
14 Ξ

T
24 Ξ

T
34 Ξ44









< 0 (8)

and

Ψ =













X11 X12 X13 X14 N1

XT
12 X22 X23 X24 N2

XT
13 XT

23 X33 X34 N3

XT
14 XT

24 X4
34 X44 N4

NT
1 NT

2 NT
3 NT

4 Z













> 0 (9)
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where

Ξ11 = Q + N1 + N
T
1 − A

T
T

T
1 − T1A + hX11, Ξ12 = N

T
2 − N1 − A

T
T

T
2 − T1Ad + hX12

Ξ13 = P + N
T
3 + T1 − A

T
T

T
3 + hX13, Ξ14 = N

T
4 − A

T
T

T
4 − T1C + hX14

Ξ22 = −(1 − µ)Q − N2 − N
T
2 − T2Ad − A

T
d T

T
2 + hX22, Ξ23 = −N

T
3 + T2 − A

T
d T

T
3 + hX23

Ξ24 = −N
T
4 − A

T
d T

T
4 − T2C + hX24, Ξ33 = R + hZ + T3 + T

T
3 + hX33

Ξ34 = T
T
4 − T3C + hX34, Ξ44 = −R − C

T
T

T
4 − T4C + hX44

Proof. Choose the Lyapunov functional candidate as

V (xt) := x
T(t)Px(t) +

∫ t

t−d(t)

x
T(s)Qx(s)ds +

∫ t

t−τ

ẋ
T(s)Rẋ(s)ds +

∫ 0

−h

∫ t

t+θ

ẋ
T(s)Zẋ(s)dsdθ (10)

where P = PT > 0, Q = QT > 0, R = RT > 0 and Z = ZT > 0 are to be determined. For any

appropriate dimensional matrices Nj(j = 1, · · · , 4), by using the Leibniz-Newton formula one has

2[xT(t)N1 + x
T(t − d(t))N2 + ẋ

T(t)N3 + ẋ
T(t − τ )N4]

[

x(t) −

∫ t

t−d(t)

ẋ(s)ds − x(t − d(t))

]

= 0 (11)

In addition, according to (7), for any appropriate dimensional matrices Tj (j = 1, · · · , 4), one has

2
[

x
T(t)T1 + x

T(t − d(t))T2 + ẋ
T(t)T3 + ẋ

T(t − τ )T4

]

[ẋ(t) − Ax(t) − Adx(t − d(t)) − Cẋ(t − τ )] = 0

(12)

On the other hand, for any appropriate dimensional semi-positive definite matrix X > 0, the following

holds

hξ
T(t)Xξ(t) −

∫ t

t−d(t)

ξ
T(t)Xξ(t)ds > 0 (13)

where ξ(t) = [xT(t) xT(t − d(t)) ẋT(t) ẋT(t − τ )]T. Then, for X = XT > 0, and any matrices

Nj(j = 1, · · · , 4) and Tj(j = 1, · · · , 4), using (11), (12) and (13) and calculating the derivative of V (xt)

along the solutions of system Σ0 yield

V̇ (xt) = 2x
T(t)P ẋ(t) + x

T(t)Qx(t) − (1 − ḋ(t))xT(t − d(t))Qx(t − d(t))+

ẋ
T(t)Rẋ(t) − ẋ

T(t − τ )Rẋ(t − τ ) + hẋ
T(t)Zẋ(t) −

∫ t

t−h

ẋ
T(s)Zẋ(s)ds 6

2x
T(t)P ẋ(t) + x

T(t)Qx(t) − (1 − µ)xT(t − d(t))Qx(t − d(t))+

ẋ
T(t)Rẋ(t) − ẋ

T(t − τ )Rẋ(t − τ ) + hẋ
T(t)Zẋ(t) −

∫ t

t−d(t)

ẋ
T(s)Zẋ(s)ds+

2
[

x
T(t)N1 + x

T(t − d(t))N2 + ẋ
T(t)N3 + ẋ

T(t − τ )N4

]

·
[

x(t) −

∫ t

t−d(t)

ẋ(s)ds − x(t − d(t))

]

+

2
[

x
T(t)T1 + x

T(t − d(t))T2 + ẋ
T(t)T3 + ẋ

T(t − τ )T4

]

·

[ẋ(t) − Ax(t) − Adx(t − d(t)) − Cẋ(t − τ )]+

hξ
T(t)Xξ(t) −

∫ t

t−d(t)

ξ
T(t)Xξ(t)ds :=

ξ
T(t)Ξξ(t) −

∫ t

t−d(t)

ζ
T(t, s)Ψζ(t, s)ds (14)

where ζ(t, s) = [xT(t) xT(t − d(t)) ẋT(t) ẋT(t − τ ) ẋT(s)]T, and Ξ , Ψ are defined in (8) and (9),

and ξ(t) is defined in (13). If Ξ < 0 and Ψ > 0, V̇ (xt) < 0 for any ξ(t) 6= 0. So Σ0 is asymptotically

stable if LMIs (8) and (9) are true. This completes the proof. �
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Remark 1. Some simple transforms show that the condition in Theorem 1 includes the condition

in Lemma 1 in [8] for a single time-delay. In addition, Theorem 1 gives a delay-dependent stability

criterion through quite simple and nature form. In [8], the approach that Park and Moon′s inequalities

were combined with descriptor model transformation was more complicated than ours.

The above result can be extended to the system with time-varying structured uncertainties. Now,

based on Theorem 1, the following theorem provides robust stability analysis of the unforced system Σ

with u(t) = 0.

Theorem. Given scalars h > 0 and µ < 1, the uncertain system Σ with u(t) = 0 and time-varying

delay satisfying (4) and (5) is robustly stable for any τ > 0 if there exist P = PT > 0, Q = QT > 0,

R = RT > 0, Z = ZT > 0, X = XT > 0, and any appropriate dimensional matrices Nj(j = 1, · · · , 4)

and Tj(j = 1, · · · , 4) and a scalar λ > 0 such that the following LMIs (15) and (9) hold,













Ξ11 + λEaET
a Ξ12 + λEaET

ad Ξ13 Ξ14 −T1D

Ξ
T
12 + λEadE

T
ad Ξ22 + λEadE

T
ad Ξ23 Ξ24 −T2D

Ξ
T
13 Ξ

T
23 Ξ33 Ξ34 −T3D

Ξ
T
14 Ξ

T
24 Ξ

T
34 Ξ44 −T4D

−DTTT
1 −DTTT

2 −DTTT
3 −DTTT

4 −λI













< 0 (15)

where Ξij(i = 1, · · · , 4; i 6 j 6 4) are defined in (8).

Proof. Replacing A and Ad in (8) are replaced with A+DF (t)Ea and Ad+DF (t)Ead, respectively,

then (8) for the uncertain system Σ with u(t) = 0 is equivalent to the following condition

Ξ + Γ
T
d F (t)Γe + Γ

T
e F

T(t)Γd < 0 (16)

where

Γd = [−D
T
T1 − D

T
T2 − D

T
T3 − D

T
T4], Γe = [Ea Ead 0 0]

By Lemma 1, a necessary and sufficient condition for (16) for the uncertain system Σ is that there

exists a λ > 0 such that

Ξ + λ
−1

Γ
T
d Γd + λΓ

T
e Γe < 0 (17)

Applying Schur complements, (17) is equivalent to (15). �

4 Stabilization

The results of Theorem 1 can also be used to verify the stability of the closed loop obtained by

applying (6) to system Σ0(with u(t) 6= 0).

Theorem 3. Given scalars h > 0 and µ < 1, the nominal system Σ0 of Σ with time-varying

delay satisfying (4) and (5) is stabilizable by the control law (6) for any τ > 0 if there exist symmetric

positive definite matrix L = LT > 0, symmetric semi-positive definite matrices M = MT > 0, J =

JT > 0, W = W T > 0, Y =









Y11 Y12 Y13 Y14

Y T
12 Y22 Y23 Y24

Y T
13 Y T

23 Y33 Y34

Y T
14 Y T

24 Y T
34 Y44









> 0, and any appropriate dimensional matrices

Uj(j = 1, · · · , 4) and S, V and any scalars s2, s3, s4 such that the following matrix inequalities (18) and

(19) hold

Φ =









Φ11 Φ12 Φ13 Φ14

Φ
T
12 Φ22 Φ23 Φ24

Φ
T
13 Φ

T
23 Φ33 Φ34

Φ
T
14 Φ

T
24 Φ

T
34 Φ44









< 0 (18)

and

Ω =













Y11 Y12 Y13 Y14 U1

Y T
12 Y22 Y23 Y24 U2

Y T
13 Y T

23 Y33 Y34 U3

Y T
13 Y T

23 Y T
34 Y44 U4

UT
1 UT

2 UT
3 UT

4 W













> 0 (19)
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where

Φ11 = M + U1 + U
T
1 − AS

T − BV − SA
T − V

T
B

T + hY11

Φ12 = U
T
2 − U1 − s2(SA

T + V
T
B

T) − AdS
T + hY12

Φ13 = L + U
T
3 + S

T − s3(SA
T + V

T
B

T) + hY13, Φ14 = U
T
4 − s4(SA

T + V
T
B

T) − CS
T + hY14

Φ22 = −(1 − µ)M − U2 − U
T
2 − s2(SA

T
d + AdS

T) + hY22, Φ23 = −U
T
3 + s2S

T − s3SA
T
d + hY23

Φ24 = −U
T
4 − s4SA

T
d − s2CS

T + hY24, Φ33 = J + hW + s3(S + S
T) + hY33

Φ34 = s4S − s3CS
T + hY34, Φ44 = −J − s4(CS

T + SC
T) + hY44

Moreover, a stabilizing control law is given by u(t) = V [S−1]Tx(t).

Proof. With the memoryless state-feedback control law u(t) = Kx(t), where the matrix K ∈

Rm×n is to be found, the system Σ0 becomes

ẋ(t) − Cẋ(t − τ ) = (A + BK)x(t) + Adx(t − d(t)) (20)

Now, we replace A in (8) with A+BK and set T1 = T and T2 = s2T, T3 = s3T, T4 = s4T . From the fact

that in (8) T3+TT
3 must be negative definite it is obvious that T3 is nonsingular and T is also nonsingular.

Then, pre- and postmultiply (8) by diag(T−1, T−1, T−1, T−1) and diag([T−1]T, [T−1]T, [T−1]T, [T−1]T)

and pre- and postmultiply (9) by diag(T−1, T−1, T−1, T−1, T−1) and diag([T−1]T, [T−1]T, [T−1]T,

[T−1]T, [T−1]T), respectively and change variables such that S = T−1, L = SPST, M = SQST, Ui =

SNiS
T(i = 1, · · · , 4), Yij = SXijS

T(i = 1, · · · , 4; i 6 j 6 4), W = SZST, J = SRST and K = V [S−1]T.

Then we obtain (18) and (19). This completes the proof. �

Similar to Theorem 3, the stabilizing memoryless controller (6) for uncertain system Σ can also

be designed in the following from Theorem 2.

Theorem 4. Given scalars h > 0 and µ < 1, the uncertain system Σ with time-varying delay

satisfying (4) and (5) is robustly stabilizable by the control law (6) for any τ > 0 if there exist symmetric

positive definite matrix L = LT > 0, symmetric semi-positive definite matrices M = MT > 0, J =

JT > 0, W = W T > 0, Y = Y T > 0, and any appropriate dimensional matrices Uj(j = 1, · · · , 4) and

S, V and any scalars s2, s3, s4 and a scalar λ > 0 such that the following matrix inequalities (21) and

(19) hold













Φ11 + λDDT
Φ12 + s2λDDT

Φ13 + s3λDDT
Φ14 + s4λDDT −SET

a

Φ
T
12 + s2λDDT

Φ22 + s2
2λDDT

Φ23 + s2s3λDDT
Φ24 + s2s4λDDT −SET

ad

Φ
T
13 + s3λDDT

Φ
T
23 + s2s3λDDT

Φ33 + s2
3λDDT

Φ34 + s3s4λDDT 0

Φ
T
14 + s4λDDT

Φ
T
24 + s2s4λDDT

Φ
T
34 + s3s4λDDT

Φ44 + s2
4λDDT 0

−EaST −EadS
T 0 0 −λI













< 0 (21)

where Φij(i = 1, · · · , 4; i 6 j 6 4) are defined in (18). Moreover, a stabilizing control law is given by

u(t) = V [S−1]Tx(t).

Remark 2. If matrices Q in Theorems 1 and 2, and M in Theorems 3 and 4 are set to 0, then

the Theorems do not include µ, which is the bound of the derivative of the delay d(t). Thus, the

rate-independent and delay-dependent criteria for system Σ with time-varying delay satisfying (4) can

be derived by following Theorems 1,2,3,4.

5 Examples

In this section, two numerical examples are presented to compare with the proposed stabilization

methods with previous results.

Example 1. Consider the uncertain system Σ with

A =

[

0 0

0 1

]

, Ad =

[

−2 −0.5

0 −1

]

, B =

[

0

1

]

, D = I, C = 0, Ea = 0.2I, Ead = αI

In [4] and [8], α is 0.2 and 0, respectively. For the case of µ = 0, the maximum bound of h for

which the system is stabilized by a state-feedback was found to be 0.45 and 0.5865 in [4] and [8],

respectively (α = 0 in [8]). When α = 0.2, applying the result of Theorem 4, a maximum bound
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of h = 0.7226 is obtained using s2 = 0.35, s3 = 0.95 and s4 = 0, the corresponding feedback gain

matrix K = −[3.3854 2.2804] × 104. When α = 0, the corresponding results are h = 0.9169 and

K = −[2.0679 0.9166] × 104 using s2 = 0.3, s3 = 1 and s4 = 0.

Moreover, when α = 0.2, applying the result of Theorem 4, the maximum bound of h for varying

µ is listed in Table 1 using s2 = 0.35, s3 = 0.95 and s4 = 0.

Table 1 Upper bounds h of time-delay for varying µ (α = 0.2)

µ 0 0.1 0.3 0.5 0.7 0.9 0.95 0.98 0.99 0.999

Theorem 4 0.722 0.713 0.695 0.683 0.681 0.647 0.553 0.491 0.471 0.453

Example 2. Consider the problem of finding a state-feedback stabilizing controller for nominal

system Σ0 with

A =

[

0 0

0 1

]

, Ad =

[

−1 −1

0 −0.9

]

, B =

[

0

1

]

, C = 0

When µ = 0, the upper bound of h obtained in [9], [8] and [10] were 1.408, 1.51 and 3.2, respectively.

Applying Theorem 3, the upper bound of h is 50.03 for s2 = 0, s3 = 1.0 and s4 = 0 and K =

−[7.7843 7.7898] × 105.

6 Conclusion

In this paper, new techniques for delay-dependent stability and stabilization of an uncertain

neutral system have been developed, in which the relationships between the terms in the Leibniz-

Newton formula are taken into account. Then some free-weighting matrices that express the influence

of these terms are determined based on linear matrix inequalities. Finally, some numerical examples

show that the results obtained in this paper are very effective and are a significant improvement over

the existing results.
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