
Vol. 31, No. 5 ACTA AUTOMATICA SINICA September, 2005

New Approach to Designing Constrained Predictive Controllers1)
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Abstract Using the framework of predictive control algorithms and the analysis results of uncon-
strained predictive control systems, the desired pole placement is achieved by the coefficient mapping
between the characteristic polynomials of the closed-loop system and the open-loop plant. The de-
signed control law can not only ensure the dynamical performance of the closed-loop system, but
also provide plentiful degrees of freedom to satisfy input-output constraints. Based on the theory
of invariant set, this paper derives some sufficient conditions for the satisfaction of constraints with
these degrees of freedom and presents an approach to design corresponding constrained controller.
The constrained controller with performance guarantee can be designed off-line. Furthermore, it has
convenient on-line computation and satisfies all constraints. A simulation example is presented to
illustrate the proposed approach.

Key words Constraints, invariant set, controller design, stability

1 Introduction

Model predictive control (MPC) has been found wide applications in industry[1]. The key idea

of MPC is: at each sampling instant, based on the system equation as the predictive model, solve a

finite-horizon optimization problem to obtain a control sequence whose first control is applied to the

plant. At the next sampling instant, repeat the above procedure and a receding horizon optimization

scheme is then established. Due to its efficiency in handling input and state constraints, MPC has

attracted wide attention in recent years[2,3]. For an overview on MPC, please refer to [4]. With a

time-varying ellipsoid invariant set, [5] established the closed-loop stability of MPC for linear discrete

systems. Considering the real-time requirement of practical implementations, [6] presented a robust

model predictive controller based on aggregation of optimization variables, which can reduce the on-line

computation load significantly.

Generally speaking, quadratic performance functions are often adopted in MPC algorithms. For

the unconstrained case, the analytical solution to the finite-horizon optimization problem can be de-

termined off-line, which makes it possible to have an performance analysis for the closed-loop system.

Furthermore, the on-line optimization is reduced into the simple vector-matrix computation which is

well acceptable in practical applications. However, there exist various constraints in industrial appli-

cations. The finite-horizon optimization at each time is practically a nonlinear optimization problem

mixed with quadratic performance function and linear constraints, which must be solved by quadratic

programming on-line. In such cases, not only heavy on-line computation demand is inevitable, but also

the exact evaluation of the system performance becomes impossible.

For the MPC of single input and single output (SISO) unconstrained systems, many conclusions

about performance analysis have been reported in the literature. For example, [7,8] studied dynamic

matrix control (DMC) and the generalized predictive control (GPC) in internal model control (IMC)

structure, respectively, and derived some conclusions about stability and the quantitative relationship

between deadbeat and design parameters. However, these results are not available to the constrained

case. The main reason is that the unconstrained controller is resulted from optimization of the quadratic

performance function. The uniqueness of the solution leads to no guarantee of constraints. For the

constrained case, all constraint conditions have to be imposed in the on-line optimization and the

optimal solution should be derived through a nonlinear programming procedure, which prevents the

analytic results of unconstrained systems from applying to the constrained case. Based on the above

analysis, this paper will design a constrained MPC controller from a new view. The main idea is: firstly,

we design an unconstrained control law using the analytic results and quantitative representations.
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Different from the previous method, the control law is derived by pole placement rather than by

quadratic performance optimization, so it is not unique and has redundant freedoms. Next, we use

these degrees of freedom to satisfy constraints based on the theory of invariant set. In this way, the

designed controller can satisfy constraints. The quantitative analysis for the closed-loop system is

still available while keeping analytical form. Therefore, it is an off-line designed, easily on-line solved

controller together with performance guarantee and constraints satisfaction.

2 Design of pole placement for unconstrained MPC

In this paper, we use DMC as an example to illustrate the design procedure of the new type of

controller. For simplicity, the details of DMC can be found in [9]. In the unconstrained case, Fig. 1

shows the flow of a DMC algorithm.

Fig. 1 The structure of DMC algorithm

In Fig. 1 ỹp0 is the initial predictive vector based on the step-response model at time k, w denotes

the desired output, p represents the prediction horizon, i.e., the time horizon in which the on-line

optimization is considered, h is the error-correction vector, and dT = [d1 · · · dp] is the control vector.

In the unconstrained DMC, dT is derived by optimizing the quadratic performance function and has

the following analytical form:

d
T = [1 0 · · · 0](AT

QA + R)−1
A

T
Q (1)

where A denotes the dynamic matrix, Q and R are the weighing matrices in performance function[9].

From (1), it is easy to see that dT has been determined uniquely.

From Fig. 1, an unconstrained control law can be calculated by:

∆u(k) = d
T[wp(k) − ỹp0(k)] (2a)

u(k) = u(k − 1) + ∆u(k) (2b)

Apparently, the on-line computation for the above control law (2) is easy and simple.

For unconstrained DMC, [10] analyzed Fig. 1 in an internal model control structure and derived

the following conclusion.

Lemma 1[10]. For a system:

Gp(z
−1) =

m(z)

P (z)
=

m1z
−1 + · · · + mnz−n

1 + p1z−1 + · · · + pnz−n
(3)

with the unconstrained DMC control law (2), the closed-loop transfer function can be described as

F (z−1) =
dsm(z−1)

P ∗(z−1)
=

ds(m1z
−1 + · · · + mnz−n)

1 + p∗

1z
−1 + · · · + p∗

n+1z
−(n+1)

(4)

where

ds =

p
∑

i=1

di (5)
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bi =

p
∑

j=1

djai+j−1, i = 2, 3 · · · , n + 2 (7)

and ai+j−1(i = 2, 3 · · · , n + 2) denote the unit step-response coefficients of the system.

Lemma 1 reveals the coefficient mapping between the characteristic polynomials of the close-

loop system designed by the algorithm in Fig. 1 and the open-loop plant. Based on this mapping, we

can make quantitative performance analysis for predictive control systems in the frequency domain.

Just based on that and the expression of dT in the original DMC algorithm, [10] presented a number

of quantitative relationships about the closed-loop performance and design parameters for predictive

control systems.

It should be mentioned that during transforming Fig. 1 into IMC structure and deriving (6), no

assumption on dT having the form (1) is given. That means (6) is independent of the expression of

dT. It will be the key in our design. Note that the dimension of dT ∈ Rp represents the length of

prediction horizon in the original DMC and there are no restrictions on it. We can select the dimension

of dT arbitrarily. In order to ensure enough degrees of freedom of dT, we will not use the unique

dT derived from quadratic performance optimization with the form (1), but design the closed-loop

predictive control system by pole placement.

According to (6), we can select n+1 parameters b2, · · · , bn+2 to assign the poles of the closed-loop

system in order to achieve the desired dynamical response. Equivalently, we can do this by assigning

coefficients p∗

1, · · · , p
∗

n+1 of the closed-loop characteristic polynomial.

From (6), it is easy to have
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Then parameters bi satisfying the pole placement condition can be solved by
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Since the parameters bi are defined by (7), i.e.,

bi =

p
∑

j=1

djai+j−1 = [d1 · · · dp]
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Since {ai} are coefficients of the unit-step response, the rank of the matrix in (11) is n+1(p > n+1)[11].

By the basic property of linear algebra, the solution of dT in (11) is unique if p = n+1; but if p > n+1,

there are infinite solutions for dT. The general solution for dT satisfying (11) can be expressed as

d
T = d

T
0 + s

T
K (12)

where dT
0 is a special solution to (11), and K = [k1 k2 · · · kp−n−1] is a basic solution set of the

equation below:
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sT = [s1 s2 · · · sp−n−1] is an arbitrary vector. Owing to the existence of sT, there are still

redundant freedoms after placing the desired closed-loop poles with dT. In the next section, we will

use these redundant freedoms to satisfy all constraints.

3 The constrained control law based on invariant set

In practical applications, the control input and its increment are always limited by the physical

properties of the actuator, i.e.,

|u| 6 umax (14)

|∆u| 6 ∆umax (15)

At the same time, the system output is often asked to be constrained in a limited range around the

setpoint, i.e.,

|w − y| 6 ymax (16)

At time k, we assume the initial predictive output vector is given by ỹp0(k) = [y0(k+1|k) · · · y0(k+

p|k)]T, and the control law is given by (2), where dT is the control gain given by (12), and w̃p(k) is the

desired output vector. For the simplicity of discussion, we suppose w̃p(k) is a constant vector with all

elements being w.

According to the DMC algorithm[10], the system output at time k is

ỹp1(k) = ỹp0(k) + a∆u(k) (17)

where ỹp1(k) = [y1(k + 1|k) · · · y1(k + p|k)]T is the output prediction after the implementation of

∆u(k), and a = [a1 · · · ap]
T is the step-response vector. Then, at time k + 1, the initial predictive

output vector ỹp0(k + 1) can be obtained by the shift of ỹp1(k):

ỹp0(k + 1) = Sỹp1(k) (18)

where S =











0 1 · · · 0

0 0 1
...

...
...

... 1

0 0 · · · 1











is the shift matrix.

To establish the connections between vectors at time k and those at time k + 1, we introduce

x(k) = w̃p(k) − ỹp0(k) (19)

By (17) and (18), we can get

x(k + 1) = w̃p(k + 1) − ỹp0(k + 1) = w̃p(k + 1) − S(ỹp0(k) + a∆u(k)) =

w̃p(k + 1) − S(w̃p(k) − x(k) + a∆u(k)) = Sx(k) − Sa∆u(k) (20)

∆u(k + 1) = d
T(w̃p(k + 1) − ỹp0(k + 1)) = d

T
Sx(k) − d

T
Sa∆u(k) (21)

Combining (2b) with (20)(21), we have

x̃(k + 1) = Ax̃(k) (22)

where

x̃(k) =





x(k)

∆u(k)

u(k)



 , A =





S −Sa 0

dTS −dTSa 0

dTS −dTSa 1



 (23)

Next, we will discuss the problem that if all the elements of x̃(k) meet the following constraints

at time k, i.e.,

|x(k)|i 6 ymax, |∆u(k)| 6 ∆umax, |u(k)| 6 umax (24)

then how to choose sT in dT such that all the element of x̃(k + 1) meet the above conditions. We have

the following theorem.



No. 5 XI Yu-Geng et al.: New Approach to Designing Constrained Predictive Controllers 659

Theorem 1. If there exist a symmetric matrix Q > 0 and a vector sT such that the following

conditions are true
[

−y2
maxQ ST

i

Si −1

]

6 0, i = 1, 2 · · · p (25)

[

−∆u2
maxQ ST

p+1 + ST
0 s

Sp+1 + sTS0 −1

]

6 0 (26)

[

−u2
maxQ ST

p+2 + ST
0 s

Sp+2 + sTS0 −1

]

6 0 (27)

A
T
QA − Q 6 0 (28)

x̃
T(0)Qx̃(0) < 1 (29)

where S0 = [KS − KSa 0], Si = [S − Sa 0]i, Sp+1 = [dT
0 S − dT

0 Sa 0], and Sp+2 = [dT
0 S

− dT
0 Sa 1], then if x̃(k) satisfies constraint (24) at time k, all future x̃(k + i) will never violate (24).

Proof. For any k, if there exists Q > 0 satisfying (28), then according to (22) and (29), we can

get

x̃
T(k + 1)Qx̃(k + 1) 6 x̃

T(k)Qx̃(k) 6 · · · 6 x̃
T(0)Qx̃(0) < 1 (30)

and the following formula holds for all k > 0:

R(k) = {x(k)|x̃T(k)Qx̃(k) < 1} ⊆ R(0) (31)

Namely, R(k) is an invariant set.

Suppose x̃(k) in set R(k) at time k meets the following constraints

|x̃(k)|i 6 (x̃max)i (32)

where x̃max denotes the upper bound of x̃(k), | · |i represents the absolute value of the ith element, and

(·)i is the ith element of a vector. Then at time k+1, the sufficient and necessary condition for x̃(k+1)

to meet constraint (32) is

|Ax̃(k)|i 6 (x̃max)i (33)

Since

|Ax̃(k)|2i = |AiQ
−1/2

Q
1/2

x̃(k)|2 6 x̃
T(k)Qx̃(k)AiQ

−1
A

T
i 6 x̃

T(0)Qx̃(0)AiQ
−1

A
T
i 6 AiQ

−1
A

T
i (34)

where Ai denotes the ith row vector of matrix A, (33) is implied by

AiQ
−1

A
T
i 6 (x̃max)

2
i (35)

Dividing both sides of (35) by positive scalars (x̃max)
2
i and using Schur complement, we can get

the equivalent form of (35) as
[

−(x̃max)
2
i Q AT

i

Ai −1

]

6 0 (36)

By replacing Ai with the row vector of A in (23) and substituting ymax, umax and ∆umax into x̃max,

(36) holds if (25)∼(27) are satisfied. �

Remark 1. Theorem 1 proposes an efficient approach to design constrained predictive controllers.

Once the free vector sT is designed off-line, the corresponding dT can be determined. Then, only

simple computation is needed on-line. Therefore, the resulted closed-loop system has desired dynamical

performance. Moreover, its input and output always satisfy constraints.

Although Theorem 1 presents an approach to design sT, both matrix Q and vector sT are unknown

in (25)∼(29). It implies that these conditions construct a set of nonlinear matrix inequalities which are

difficult to solve. Next, we give an efficient algorithm for designing sT by Theorem 1.

Algorithm 1.

Step 1. Calculate the unit step-response coefficients {ai} of the system based on its transfer

function and give a set of desired closed-loop poles, then solve parameters {bi} according to (9).

Step 2. Select a prediction horizon p > n + 1, where n is the dimension of the system, determine

dT
0 using (11). Simultaneously, solve the set of the basic solution K = [k1 k2 · · · kp−n−1] with

(13).
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Step 3. Select a symmetric matrix Q1 > 0 and substitute it into (25)∼(27), then solve the

LMI-based optimization problem, i.e.,

min a s.t.

{

Inequaties (25 ∼ 27)

Q1 6 aIp+2

(37)

Step 4. If there exist feasible solutions in Step 3, then substitute the determined sT into (12) to

obtain dT, and into (23) to obtain A. Solve the following LMIs:











ATQ2A − Q2 6 0

Q1 6 Q2

x̃T(0)Q2x̃(0) < 1

(38)

Step 5. If the problems in Step 3 and 4 are feasible, dT is the final result for the on-line control

law (2). Otherwise, increase the prediction horizon p and go to Step 2.

Remark 2. In the proof of Theorem 1, we concluded that (25)∼(27) are equivalent to condition

(35). Therefore, if there exists a feasible solution in Step 3, we can get AiQ
−1
1 AT

i 6 (x̃max)
2
i . Next, if

the LMIs in Step 4 are feasible, then Q1 6 Q2 ensures that AiQ
−1
2 AT

i 6 AiQ
−1
1 AT

i 6 (x̃max)
2
i is true,

i.e., (25)∼(27) are still satisfied when Q1 is replaced by Q2.

4 Simulation example

In this section, an illustrative example is presented to verify the feasibility of Algorithm 1. The

software used in this example is LMI Toolbox of Matlab.

Suppose the transfer function of the plant is

GP (z−1) =
z−1

1 + 0.85z−1

We select the prediction horizon p = 5, the desired output w = 0.3. The desired closed-loop character-

istic polynomial is P ∗(z) = 1 − 0.3z−1 + 0.02z−2. We consider following constraints:

|u| 6 0.8, |∆u| 6 0.4, |w − y| 6 0.9

Other parameters are given as follows

S0 =





0 −0.5269 0.0730 0.8087 −0.3548 0.0833 0

0 −0.1948 −0.6544 0.0899 0.7592 −0.0155 0

0 −0.4770 −0.0362 −0.1491 0.6623 −0.3752





S1 = [0 1.0000 0 0 0 − 0.1500 0]

S2 = [0 0 1.0000 0 0 − 0.8725 0]

S3 = [0 0 0 1.0000 0 − 0.2584 0]

S4 = [0 0 0 0 1.0000 − 0.7804 0]

S6 = [0 1.0771 − 0.3571 0 0 − 0.1500 0]

S7 = [0 1.0771 − 0.3571 0 0 − 0.1500 1.0000]

By solving the optimization problem in Algorithm 1 with the above parameters and initial state

x̃(0) = [0; 0; 0; 0; 0; 0; 0], we can get the predictive control law as

∆u(k) = [0.2708 0.0930 0.2430 − 0.8401 0.9534]bw̃p(k) − ỹP0(k)c

The trajectories of output, input and input increment are shown in Fig. 2.

From the simulation above, we can see that the output tracks the desired reference perfectly.

Moreover, input, output and input increment do not exceed their constraints during the entire process

of implementation.
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(a) The trajectory of output (b) The trajectory of input increment (c) The trajectory of input

Fig. 2 Simulation results

4 Conclusion

This paper investigates the design of predictive controllers with input and output constraints. The

core idea is to assign the closed-loop poles using the coefficient mapping between the characteristic poly-

nomials of the closed-loop system and the open-loop plant. The stability and dynamical performance

of the closed-loop system are firstly guaranteed. Next, extend the prediction horizon to increase the

degrees of freedom of the control, and use these redundant freedoms to meet all kinds of constraints. In

fact, either input, input increment or output has close connection with these freedoms. If appropriate

conditions are satisfied with these freedoms, the resulted controller can not only ensure the dynamical

performance of the closed-loop system, but also guarantee the satisfaction of constraints. Based on the

invariant set method, the sufficient conditions for the existence of the controller are presented, and the

feasible algorithm is also given. Using the LMI Toolbox of Matlab, it is easy to design the constrained

predictive controllers.
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