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Abstract This paper combines image processing with 3D magnetic tracking method to develop
a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is
presented and the performance is validated from soft tissue cutting. Then, based on the acquired
input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning
each input space equally and giving the premises and the total number of fuzzy rules, the consequent
parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized
via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established
cutting model is described. Preliminary results show the feasibility of the haptic display system for
real-time interaction.
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1 Introduction

As a new training method, surgery simulation attracts more and more research interests due to

its flexibility, convenience and low cost. Most of the present prototypes only emphasize on visualization

of the soft tissue, and cutting is visualized by geometry models[1,2]. Apart from the visual effect, the

haptic can also give additional information about the physiological state of the cutting tissue, especially

in various kinds of minimally invasive surgery (MIS), hence the ability of haptic rendering for cutting

simulation is important.

Since there is no direct correlation between the parameters of tissue and the control points of the

geometry models, it is difficult to simulate haptic. The physical models[3,4], on the other hand, have

been used to demonstrate the dynamic behaviour of soft objects or organs, and can run in real-time by

introducing preprocessing or condensing method[5,6]. However, they are sensitive to tissue parameters,

or the topology of the tissue should be updated when cutting, therefore, the haptic display of cutting

is not considered or simply taken as the elastic force from the tissue.

Recently, the cutting force has been measured by installing a force sensor in a scalpel[7,8], but

without modeling the cutting depth and the cutting force. The interacting force was analysed for

surgery scissor cutting and needle puncturing[9,10], and used to model the surgery gestures from the in

vivo measurement[11,12]. However, they are limited to modeling the cutting process indirectly, and the

idea of modeling is still a conventional one. To achieve the haptic display, which needs at least 1KHz

of refresh frequency to get a natural feeling, a “haptic recording” rendering approach was proposed by

directly displaying the acquired haptic data[10]. But this method lacks flexibility and there are several

limitations to the usage of “acquired haptic”. Previously we presented a similar model by fitting the

acquired data[13], but it lacks continuity and has to change between different cutting phrases.

This paper aims to provide a new modeling method and a prototype hardware implementation for

haptic display in surgical cutting simulations. As the tissue-cutting mechanism is very complex and its

dynamic characters are difficult to achieve[14], we exploit the fuzzy characteristics of the tissue cutting,

which may embody the essence of this phenomenon, by working with a fuzzy model (FM) instead of

mathematical one. Developing an FM is usually easier and cheaper than developing a mathematically

based model, and it offers some advantages over conventional one in robustness and fidelity. Also, FMs

have already been successfully applied to a number of systems[15]. The T-S fuzzy modeling method[16],

characterized by its high efficiency and easy combination with adaptive optimization methods[17], was

chosen for this purpose. Based on an input-output data set, the adaptive neural fuzzy inference system
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(ANFIS) is an universal approximator that allows a fuzzy inference system to learn by using a back-

propagation algorithm[18]. Given enough fuzzy rules, the model could approximate any real continuous

function and the output surface is continuous[19]. Compared with the conventional models, the fuzzy

haptic model presented in this paper could achieve more realistic and smooth haptic display and could

be easily implemented by hardware as well. Preliminary results from our haptic scalpel have shown

that realistic simulations are possible. Simplicity is the main advantage of the system.

The arrangement of this paper is as follows. In Sections 2 and 3, a new cutting parameter

acquisition system is presented, and cutting experiments are performed. After preprocessing of the

acquired data, a haptic model is established based on fuzzy inference method in Section 4. Following

the identification, the fuzzy model is then used for developing a haptic display device and preliminary

experiments are given in Section 5. Finally, Section 6 details the conclusions.

2 Cutting parameter acquisition setup

The cutting force acquisition device is adapted from a surgery stainless scalpel[20]. An alloy sheath

without ferromagnetism is installed outside the scalpel that revolves on the axis of the scalpel. A three

dimensional and six degrees of freedom magnetic tracking device (FASTRACK 3SPACE, Polhemus

Com.) is attached to the outside of the sheath to acquire the position and orientation information of

the scalpel (the static accuracy is 0.005mm and 0.025◦ in the range of 1m), and the cutting velocity

is calculated from the distance travelled and the time spent. A force sensor (FSL05N2C, Honeywell)

is attached to the upper end of the handle inside the sheath (with nominal sensitivity of 0.12mV/g).

After amplified by 100 times, the output voltage of the sensor is sampled with a 12bits A/D card

(KH–9251) at a sampling frequency of 10KHz, then sent to a personal computer for recording. The

cutting force from the scalpel edge can be calculated after calibration and unit conversion. In order to

reduce the interference of ferromagnetism material with the magnetic tracking device, a wood board

is chosen as the cutting platform. The interference of the stainless scalpel can be ignored, since the

cutting process is within the effective tracking range (1.5m), and the material of the scalpel is hard

steel and the volume is small. In the cutting process, the scalpel′s length outside the tissue is recorded

from the digital video camera (ExwaveHead, Sony Com.) and image capture card (DH-CG300, DaHeng

Image Com.) based on color identification. The handle and sheath of the scalpel are painted black

for easy differentiation between the cutting tissue and the scalpel. The cutting force of the system is

calibrated with an electrical scale with a precision of 0.5g at different cutting conditions, and the output

voltage of the A/D acquisition card is 1240mv/N, which is in accordance with the nominal accuracy.

The calibration of cutting depth is given by measuring the image pixels of the scalpel (47.5mm) and

the image pixels (400), so the measured precision is 0.118mm/pixel. The setup is shown in Fig. 1.

Fig. 1 The cutting parameter acquisition experimental setup

3 Material preparation and cutting experiments

A pair of freshly-slaughtered swine′s livers are prepared for the cutting experiment. First, one

end of the liver is fixed on the testing table with a nail, while the other end is left free, just to mimic

the actual tissue boundary as much as possible. 27◦ salt solution is sprayed occasionally in the process

of the experiment in case of tissue dehydration and hardness, which would influence the biomechanical
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property of the tissue. The wood cutting table is chosen to minimize the interference with the magnetic

tracking device. Then, the liver is cut from the fixed end to the free end, and the cutting force and

cutting velocity and cutting depth are recorded with the acquisition system. Fig. 2 (a) shows the original

unfiltered liver cutting forces at different depths (5mm, 10mm, 15mm, 20mm) for different cutting times

(3, 4, 4, 3 corresponding to each of the above cutting depths). The cutting force heavily depends on the

cutting depth, that is, the deeper the penetration of the scalpel blade, the higher the cutting force. But

even for identical penetration depth, there exists a distinctive difference. The possible reason might be

the tissue boundary condition variance in the cutting process. We can also observe a saw-type cutting

force curve, which indicates the tissue experiences a repeated process from elastic deformation to abrupt

fracturing.

4 Identification of the haptic model

4.1 Data preprocessing

In order to identify the nonlinear cutting model, specifications should be given in terms of input-

output pairs. Because of the nonlinearity, viscoelasticity and time dependency of the soft tissue[21],

different cutting processes vary greatly. Even in the same cutting process the cutting force shows

nonlinearity with the boundary conditions of the tissue changing. In order to minimize the randomicity

of a single experiment, a preprocessing method is adopted from the collected data: The cutting forces

are averaged for different cutting experiments at each given cutting depth and each cutting velocity.

The processed data are shown in Fig 2 (b). Then, the fuzzy modeling process based on the filtered

input-output data can begin.

(a) (b)

Fig. 2 The original unfiltered (a) and the pre-processed (b) cutting force

4.2 Structure identification

Although Sugeno′s approach is still in continuous development, it comes closer to the qualitative

reasoning. The identification method tries to determine all elements: variables, fuzzy sets, and conse-

quent coefficients. This approach uses hybrid learning that can be combined with adaptive optimization

methods easily. The only information specified by the user is the number and the type of membership

functions and the training sequence. Given enough fuzzy rules, it can approximate any precision, so

we choose it as the base of our model. The structure identification of the fuzzy system is to partition

the input variable space equally and then to estimate the precondition parameters. After choosing the

Gaussian function as the MF of the input variables, the consequent parameters are estimated and the

parameters (mij , σij) of the input MFs are optimized. The procedure stops at a certain step when the

performance is less than a desired value.

Suppose the system function to be identified is F (X, Y ), where (X, Y ) are n pairs of experimental

data, and the vector X is the input cutting depth and cutting velocity, while the vector Y is the output

cutting force. This paper only concerns with the multi-input single-output (MISO) system, and the

fuzzy structure of the cutting force can be identified through the following steps.

1) Fuzzy partition of input space. The input spaces (x1, x2) are divided into five (NB, NS, Z, PS,

PB) and four (NB, NS, PS, PB) fuzzy subspaces equally by the center of each MFs (Chosen as Gaussian
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function) respectively, and the output cutting force (y) is the linear combination of each input variable,

and need not be partitioned.

2) Fuzzy rule inference. First order T-S structure is adopted and the biggest membership is

assigned to a given point according to the known MF and the collected data pairs (xi1, xi2, yi). The

total number of fuzzy rules is 20 (5 × 4), as

Ri : if x1 is Al1 and x2 is Al2 then yi = pi0 + pi1 · x1 + pi2 · x2 (1)

where the subscript i = 1, 2, · · · , 20 is the index of the fuzzy rule, Ri is the ith fuzzy rule, xj and yi are

the jth input variables and the output of the ith fuzzy rule, respectively, and pij is the parameter to

be identified. Aij is the fuzzy subset of the input variable xj for the ith rule, whose MF is

Aij(x) = exp
�
−(xi − mij)

2/σ2
ij

�
(2)

where mij , σij are the midpoint and variance of the input fuzzy set, respectively.

3) Defuzzy. The output of the fuzzy system is averaged with weighted factors, that is,

y =

20X
i=1

wi(X)∗yi, wi(X) =

2Y
j=1

Aij(xj)

20X
i=1

"
2Y

j=1

Aij(xj)

# (3)

where wi(X) is the standard output contribution from the ith fuzzy rule.

Now, the structure of the fuzzy system has been identified.

4.3 Parameter identification

After the structure identification of the fuzzy system, the premises and number of rules are decided.

Then the consequent parameters (pij) of the system should be estimated and the parameters (mij , σij)

of the input MFs are optimized. The ANFIS is a universal approximator that allows a fuzzy inference

system to learn by using a back-propagation algorithm based on an input-output data set. Learning

is performed in two stages: at first, the antecedent parameters are kept fixed and the information is

propagated to the fourth layer, where the consequent parameters are identified by using the minimum

least mean squares method, then the consequent parameters are fixed and the error is back-propagated,

allowing the antecedent parameters modified by means of a gradient method. The training process is

accomplished by using MatLab 6.0[17] (Mathwork Com.), that is, the collected 120 pairs of input-output

data are divided into two groups randomly and are used as training and checking separately. After 80

epochs of training, the mean square error is 0.036 for the training group and 0.0804 for the checking

group. Fig. 3 (a) shows the input Gaussian MFs after optimisation. Compared with the original ones,

they are not separated equally along the input spaces. Fig. 3 (b) shows the established cutting force

model.

(a) (b)

Fig. 3 The membership functions (MF) of the input variables after training (a) and the haptic model (b)
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5 Haptic simulations

5.1 Haptic scalpel

The haptic system consists of the following parts: a haptic scalpel and its driver, an A/D card, a 3D

motion tracker and a PC (PIII-800, 256M, GeForce III). Fig. 4 shows the compositions and diagrammatic

sketch of the haptic system. In order to display the haptic more naturally and realistically, the haptic

scalpel is made resemblant to the real scalpel in its shape and usage. Since an operation must be done

deliberately, a surgeon′s “hand-feeling”(e.g. force feedback) is very important, and any little imprudent

action would be the cause of a medical accident. In order to simulate the real operation process more

factually, high precision and perfect real-time quality are required for haptic training device. Since

surgical scalpel is very sharp, the haptic force from the handle of the scalpel is very small and smooth.

The driving force of the haptic scalpel should be continuous without fluctuation and should run in

real-time. We choose a step motor, which cooperates with a screw-driven machine, to generate the

haptic force. Check [22] for the detailed mechanical design.

(a) (b)

Fig. 4 The haptic system composition (a) and its diagrammatic sketch (b)

5.2 Haptic display

The working process of this system can be better under stood by checking Fig. 4 (b). The position

and velocity acquired from the 3D tracking device are firstly filtered as described in Section 4.1 to

decrease the dithering effect. Then, the haptic model established above is used to determine the correct

force for display. Finally, it is sent to the step motor to drive the haptic device according to the

established haptic model. A whole surgical simulating system should provide not only real-time haptic

rendering (1 KHz) but also visual rendering (50Hz) and the cooperation of each other. As the visual

aspect of surgery is researched much deeply, we are currently concerned with only haptic rendering.

In order to examine the effectiveness of the haptic scalpel without the visual feedback, a preliminary

experiment is conducted by providing a fixed cutting depth to drive the model. As for selecting the

force profiles suitable for cutting simulations, it is observed that the forces differ widely, depending

on the controlled variables of tissue type, animal type, and cutting style. We select swine′s livers for

simulating straight-line cutting at different depths and velocities. Fig. 5 (a) shows a comparison between

the model generated force and measured real cutting force, and Fig. 5 (b) shows the simulated cutting

process and the original recorded real cutting process, both at cutting depth of 5mm. It is shown that

the haptic model can be effectively used as cutting force prediction and simulation.

6 Conclusions

Firstly, a multi-parameter acquisition system is presented in this paper based on image processing

and magnetic tracking method, which is validated from swine′s liver cutting experiment. From the

acquired input-output data pairs and based on fuzzy neural network theory, a new haptic model is

established for the liver cutting operation. Compared with conventional physical modeling, the calcula-

tion of reacting force is independent of the geometry model of the cutting surface, and can be used for

real-time surgery cutting simulation. While limited by the number of samples and the interference from

cutting acceleration and orientation, the precision of this model needs to be further improved. Finally,

a virtual scalpel as the haptic interface is described. Despite the present limitations of the hardware,
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preliminary experiments have shown that realistic simulations are possible. Simplicity is the main ad-

vantage of our haptic device and it could achieve real-time haptic display. Yet, there are limitations to

using haptic scalpel to simulate different cutting styles, and more quantitative and qualitative results

are needed for a deep comparison by surgeons.

(a) (b)

Fig. 5 The comparison between acquired and predicted (a)

and simulated and pre-recorded (b) cutting force at depth of 5mm
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