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Abstract The concept of finite-time stability for linear singular system is induced in this paper.

Finite-time control problem is considered for linear singular systems with time-varying parametric

uncertainties and exogenous disturbances. The disturbance satisfies a dynamical system with para-

metric uncertainties. A sufficient condition is presented for robust finite-time stabilization via state

feedback. The condition is translated to a feasibility problem involving restricted linear matrix in-

equalities (LMIs). A detailed solving method is proposed for the restricted linear matrix inequalities.

Finally, an example is given to show the validity of the results.

Key words Finite-time stability, linear singular systems, parametric uncertainties, exogenous

disturbances, LMI

1 Introduction

In the last decade, big effort has been spent on studying the robust stability problem for linear

systems subject to uncertainties. The work of many control scientists and engineers has mainly focused

on robust Lyapunov stability. In practice, one is not only interested in system stability(e.g. in the

sense of Lyapunov), but also in bounds of system trajectories. A system could be stable but completely

useless because it possesses undesirable transient performances. To study the transient performances

of system, the concept of finite-time stability was proposed by Dorato[1]. Some work has been done on

the finite time control of linear systems, such as [2,3].

On the other hand, singular systems have comprehensive practical background and great progress

has been made in the theory and its applications since 1974[4∼9] . In this paper, based on [2] , we first

generalize the concept of finite-time stability to linear singular systems. Then finite-time control prob-

lem is considered for linear singular systems with time-varying parametric uncertainties and exogenous

disturbances.

2 Problem statement

Consider the following linear singular systems:
{

Eẋ = A(p)x(t) + B(p)u(t) + G(p)w(t)

ẇ = S(p)w(t)
(1)

where, x(t) ∈ Rn is the state, u(t) ∈ Rm is control input, w(t) ∈ Rl is the disturbance; E is a singular

matrix with rankE = r < n, other matrices A(p),B(p), G(p), S(p) are of appropriate dimensions. In

this paper, we assume the following:

A1. The parametric vector function p(·) = (p1(·), p2(·), · · · , pq(·))T is any Lebesgue measurable

function p(·) : [0, T ] → <, (Lebesgue measurement is more general than continuous property, the former

also can gurantee the existence of system solution.) where, < = [p1, p̄1] × [p2, p̄2] × · · · × [pq, p̄q]. We

denote the vertices of < by p(i), i = 1, 2, · · · , 2q .

A2. The matrix valued functions A(·), B(·), G(·), S(·) are given by multiaffine matrix valued func-

tion; for instance, A(p) =

1
∑

i1,i2,···,iq=0

Ai1i2···iq
p

i1
1 p

i2
2 · · · piq

q , where, i1, i2, · · · , i1 ∈ {0, 1}, particularly, if

q = 2, then p(·) = (p1(·), p2(·))T, A(p) = A00 + A10p1 + A01p2 + A11p1p2.
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A3. The initial value of exogenous disturbances w(0) satisfies the constraint: wT(0)w(0) 6 d, d >

0.

The paper′s aim is to find the state feedback controller u(t) = Kx(t) such that the closed-loop

system is impulse-free and the state is bounded over a finite-time interval, i.e., the closed-loop is finite

time stability. Firstly, we need the following definitions:

Definition 1[10]. The time-varying linear singular system Eẋ(t) = A(t)x(t)+G(t)w(t) is said to

be impulse-free in time interval [0, T ], if degreedet(sE − A(t)) = rankE.

Definition 2. (FTS) The time-varying linear singular system

{

Eẋ(t) = A(t)x(t) + G(t)w(t)

ẇ(t) = S(t)w(t), wT(0)w(0) 6 d
(2)

is said to be finite time stable with respect to (c1, c2, T, R, d) with c2 > c1, R > 0. If xT(0)ETREx(0) 6

c1, then

x
T(t)ET

REx(t) 6 c2, ∀t ∈ [0, T ], ∀w(0), w
T(0)w(0) 6 d

Remark 1. Definition 2 is generalization of finite time stability[2] to linear singular system.

Remark 2. If impulse-free system is FTS, then the state is no more than one certain bound.

3 Main results

First, a sufficient condition is given, which guarantees that the system (2) is impulse-free and FTS.

Theorem 1. The time-varying linear singular system (2) is impulse-free and FTS with respect

to (c1, c2, T, R, d), if there exist positive matrices Q1 > 0, Q2 > 0, nonsingular matrix P , and a scalar

α > 0 satisfying:

PE = E
T
P

T
> 0,

[

PA + ATPT − αPE PG

GTPT Q2S + STQ2 − αQ2

]

< 0 (3a,3b)

PE = E
T
R

1

2 Q1R
1

2 E, e
αT(λmax(Q1)c1 + λmax(Q2)d) < λmin(Q1)c2 (3c,3d)

Proof is omitted. For the paper′s aim, we have equivalent form for Theorem 1.

Theorem 2. Time-varying linear singular system (2) is impulse-free and FTS with respect to

(c1, c2, T, R, d), if there exist positive matrices Q1 > 0, Q2 > 0, nonsingular matrix P̄ and scalar α > 0

satisfying:

EP̄
T = P̄E

T
> 0,

[

AP̄T + P̄AT − αEP̄T G

GT SQ2 + Q2S
T − αQ2

]

< 0 (4a,4b)

P̄
−1

E = E
T
R

1

2 Q1R
1

2 E, e
αT[λmax(Q1)c1 + λmax(Q2)d] < λmin(Q1)c2 (4c,4d)

Corollary 1. In system (2) when E = I, S = 0, system is FTS with respect (c1, c2, T, R, d), if

there exist positive matrices Q̄1 > 0, Q̄2 > 0, scalar α > 0 satisfying the following inequalities:

[

AP̄T + P̄AT − αEP̄ GQ̄2

Q̄2G
T −αQ̄2

]

< 0, e
αT(

c1

λminQ̄1
+

d

λminQ̄2
) <

c2

λmaxQ̄1

where P̄ = R−
1

2 Q̄1R
−

1

2 ,

Remark 3. Corollary1 is Lemma 6 in [2].

Using Theorem 2 and [11], we get our main theorem.

Theorem 3. There exists a controller for system (1) such that the closed-loop is impulse-free and

FTS with respect to (c1, c2, T, R, d), if there are positive matrices Q1 > 0, Q2 > 0, nonsingular matrix

P̄ , matrix K̄, and scalar α > 0 satisfying (4a), (4c), (4d), and the following linear matrix inequality:

[

A(p(i))P̄
T + P̄AT(p(i)) + B(p(i))K̄ + K̄TBT(p(i)) − αEP̄T G(p(i))

GT(p(i)) S(p(i))Q2 + Q2S
T(p(i)) − αQ2

]

< 0

And the feedback controller is u(t) = K̄P̄−Tx(t).
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To solve (4a), (4c), (4d), and LMI in Theorem 3, we need translate them to restrict linear matrix

inequalities. There exist nonsingular matrices C, D, such that Ē = CED = diag{Ir, 0}. Letting P̃ =

CP̄D−T, from condition (4a), P̃ is of the form P̃ =

[

P11 P12

0 P22

]

, and P11 > 0, P12 ∈ Rr×(n−r), P22 ∈

R(n−r)×(n−r). Define matrix Φ = D [ 0 In−r ]T. It is clear that rankΦ = n − r, EΦ = 0, and

P̄ = C
−1

[

P11 P12

0 P22

]

D
T =

(C−1

[

Ir 0

0 0

]

D
−1)(D

[

P11 0

0 ∗1

]

D
T) + (C−1

[

P12

P22

]

)([0 In−r]D
T) =

EDXD
T + C

−1
Y Φ

T

where X = diag{P11, ∗1}, Y = [PT
12 PT

22]
T. It is obvious that P̄ = EDXDT + C−1Y Φ

T sat-

isfies (4a), and (4c) holds when Q1 = R−
1

2 CTX−1CR−
1

2 . For condition (4d), since λmax(Q1) =
1

λmin(R
1

2 C
−1

XC
−T

R
1

2 )
, λmin(Q1) = 1

λmax(R
1

2 C
−1

XC
−T

R
1

2 )
, it is easy to check that condition (4d)

is guaranteed by imposing the condition

λ1I < R
1

2 C
−1

XC
−T

R
1

2 < I, Q2 < λ2I,

[

e−αT c2 − dλ2
√

c1√
c1 λ1

]

> 0 (5a,5b,5c)

for some positive numbers λ1, λ2. Therefor we have:

Corollary 2. For system (1) there exists a controller such that closed-loop system is impulse-free

and FTS with respect to (c1, c2, T, R, d), if there exist positive matrices X = diag{P11, ∗1} > 0, Q2 > 0,

matrices Y ∈ Rn×(n−r), K̄, and scalars α > 0, λi, i = 1, 2, satisfying LMIs (7) and the following LMI:

[

Ω G(p(i))

GT(p(i)) S(p(i))Q2 + Q2S
T(p(i)) − αQ2

]

< 0 (6)

where Ω = A(p(i))β
T(X, Y ) + β(X, Y )AT(p(i)) + B(p(i))K̄ + K̄TBT(p(i)) − αEβT(X, Y ), β(X, Y ) =

EDXDT + C−1Y Φ
Tis nonsingular, matrices C, D satisfy CED = diag{Ir, 0}, Φ = D

[

0 In−r

]T

.

Then the feedback controller is u(t) = K̄β−T(X, Y )x(t).

Remark 4. If β(X, Y ) obtained from LMIs (5,6) is singular, there is a small scalar θ(‖θ‖ << 1),

such that EDXDT + C−1Y Φ
T + C−1[0 θIn−r]

T is nonsingular. For simplicity denote it by β(X, Y )

and it still satisfies (5,6).

Remark 5. In this paper the finite time control problem is considered only for impulse-control

singular system. For impulse system, from Defintion 2 finite time stability only can gurantee that the

state of dynamic part is no more than a certain bound. As for impluse-uncontrol system, finite time

control problem needs further study.

Example. Let us consider system (1) with:

E =





1 0 0

0 1 0

0 0 0



 , A(p) =





p 1 p

p − 1 p 0

1 0 1



 , B(p) =





p

1

1



 , G(p) =





0.25p

0.1p

0.1





S(p) = 0.5p − 0.3, where p ∈ [−1, 1]. When c1 = 1, c2 = 10, T = 1.3, R = I, d = 0.5, we get from

LMIs (5,6):

X =





0.7461 −0.0870 0

−0.0870 0.8510 0

0 0 0.7546



 , Y =





−0.4235

0.0275

−0.6639





K̄ = [−0.7610 − 1.0713 0.2349], Q2 = 1, α = 1, λ1 = 0.5, λ2 = 1.1

Then the finite time state feedback controller for system (1) is u(t) = [−1.1807 −1.3795 0.3421]x(t).
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4 Conclusion

The concept of finite time stability for linear singular system is given. Finite-time control problem

is studied for linear singular system with time-varying parametric uncertainties and exogenous distur-

bance. Compared with [2], the exogenous disturbance is not constant, it satisfies one dynamical system

with parametric uncertainties. The sufficient condition is attained for robust finite-time stabilization

via state feedback. This condition is reduced to a feasibility problem involving restricted linear matrix

inequalities. A detailed solving method is proposed for such restricted LMIs. Finally, an illustrative

example is shown.
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