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Abstract The problem of globally quadratic stability of switched nonlinear systems in block-
triangular form under arbitrary switching is addressed. Under the assumption that all block-
subsystems are zero input-to-state stable, a sufficient condition for the problem to be solvable is
presented. A common Lyapunov function is constructed iteratively by using the Lyapunov functions
of block-subsystems.
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1 Introduction

In recent years, the stability problem of switched systems has attracted great attention[1∼3]. It
is well known that switching between stable subsystems may lead to instability and switching between
unstable subsystems can give rise to stability. Stability of switched systems under arbitrary switching
is a desirable property because this property enables one to seek for other system performances by
switching without changing stability. Many results concerning this issue have appeared. The stability
of switched systems under arbitrary switching can be assured by a common Lyapunov function. In linear
case, many approaches, such as Lie algebra condition under which all subsystems can be simultaneously
transformed into triangular form[4], gradient algorithms[5] and solving a group of linear inequalities[6],
have been presented to construct common Lyapunov functions. For switched nonlinear systems the
problem turns to be more complicated and relatively fewer results have been available by now. By
using approximation linearization, [4] gave a solution of local stability. Some systems with commutative
vector fields and in triangular form were investigated in [7], and a global stability result was obtained.

A switched linear system, whose subsystems are all in stable triangular form, is known to share a
common Lyapunov function and is thus globally asymptotically stable under arbitrary switching. For
a switched nonlinear system, however, this conclusion is no longer valid (see the counterpart in [7]). In
this paper, we study switched nonlinear systems in block-triangular form. Under the assumption that
all block-subsystems are zero input-to-state stable, a sufficient condition for a switched system of this
class to be globally quadratically stable under arbitrary switching is presented. This result extends the
stability results of switched linear systems in triangular form to the nonlinear case. Also, a common
Lyapunov function is constructed iteratively by using the Lyapunov functions of block-subsystems. An
example is given to demonstrate the proposed result.

2 Main results

Consider the switched system

ẋ = fi(x), i = 1, · · · , m (1)

We first give the definition of globally quadratic stability.
Definition 1. System (1) is said to be globally quadratically stable under arbitrary switching if

there exists a positive definite quadratic function U(x) = xTPx such that Lfi(x)U(x) 6 −α‖x‖2, i =
1, · · · , m, for some constant α > 0.

Consider a switched nonlinear system described as

ẋ =









fi1(x1, x2, · · · , xk)
fi2(x2, · · · , xk)

· · ·
fik(xk)









, i = 1, · · · , m (2)
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where x = (xT
1 , · · · , xT

k )T ∈ Rn, xj ∈ Rnj , j = 1, · · · , k, n1 + · · · + nk = n, fij(xj , · · · , xk) ∈ Rnj ,
fij(0) = 0, i = 1, · · · , m, j = 1, · · · , k. We study the globally quadratic stability of system (2) under
zero input-to-state stability of each block-subsystem, that is, if (xj+1, · · · , xk) is viewed as an input
u, the switched system ẋj = fij(xj , u), i = 1, · · · , m, is globally asymptotically stable under arbitrary
switching when u ≡ 0. We assume that fij , i = 1, · · · , m, j = 1, · · · , k, are global Lipschitz vector fields.

Theorem 1. If there exist positive definite quadratic functions Vj(xj) = xT
j Pjxj and constants

αj > 0, j = 1, · · · , k such that Lfik(xk)Vk(xk) 6 −αk‖xk‖
2, i = 1, · · · , m, and Lfij (xj , 0, · · · , 0)Vj(xj) 6

−αj‖xj‖
2, i = 1, · · · , m, j = 1, · · · , k − 1, then switched system (2) is globally quadratically stable

under arbitrary switching.

Proof. It is easy to see that there exists lj > 0, such that
∥

∥

∥

∂Vj

∂xj
‖ 6 lj‖xj‖, j = 1, · · · , k − 1. For

the accordance of symbols, let W1 = Vk, ξ1 = xk, K̃1 = αk, gi1 = fik.
Consider system

{

ẋk−1 = fik−1(xk−1, ξ1)

ξ̇1 = gi1(ξ1)
, i = 1, · · · , m (3)

Let W2(xk−1, ξ1) = K1W1+Vk−1 and choose K1 = l2l20/(2α0K̃1), θ1 =
√

α0/(ll0) + ll0/(4K1K̃1), where

α0 = min{α1, · · · , αk−1}, l0 = max{l1, · · · , lk−1}, l is the maximum of all Lipschitz coefficients. Then
along the trajectory of (3) for ∀i = 1, · · · , m, using inequality ‖xk‖‖xk−1‖ 6 θ2

1‖xk−1‖
2/2+‖xk‖

2/(2θ2
1),

we have

Ẇ2 6 − K1αk‖xk‖
2 + Lfik−1(xk−1, 0)Vk−1 + Lfik−1(xk−1, xk) − fik−1(xk−1, 0)Vk−1 6

− K1αk‖xk‖
2 − α0‖xk−1‖

2 + ll0‖xk‖‖xk−1‖ 6 −K̃2(‖xk−1‖
2 + ‖ξ1‖

2) (4)

where K̃2 = min{K1K̃1 − ll0/(2θ2
1), α0 − ll0θ

2
1/2} > 0.

For j = 2, · · · , k − 1, let ξj = (xT
k−j+1, ξ

T
j−1)

T, gij = (fT
ik−j+1, g

T
ij−1)

T. We consider the system

{

ẋk−j = fik−j(xk−j , ξj)

ξ̇j = gij(ξj)
(5)

Let Wj+1(xk−j , ξj) = KjWj + Vk−j , and choose Kj = l2l20/(2α0K̃j), θj =
√

α0/(ll0) + ll0/(4KjK̃j).

Then for ∀i = 1, · · · , m, along the trajectory of (5), we have

Ẇj+1 6 −K̃j+1(‖xk−j‖
2 + ‖ξj‖

2) (6)

where K̃j+1 = min{(KjK̃j − ll0/(2θ2
j )), (α0 − ll0θ

2
j /2)} > 0.

When j = k − 1, system (5) is exactly system (2). Using (6) gives Ẇk 6 −K̃k(‖x1‖
2 + ‖ξk−1‖

2).
From the expressions of W1, W2, · · · , Wk−1, we have Wk = Kk−1Kk−2 · · ·K1Vk+Kk−1Kk−2 · · ·K2Kk−1+
· · · + Kk−1V2 + V1. Therefore, the globally quadratic stability of switched system (2) under arbitrary
switching follows. �

Remark 1. When all subsystems of system (2) are in linear triangular form, Theorem 1 dege-
nerates into the result in [2,7].

Remark 2. Since input-to-state stability implies zero input-to-state stability, Theorem 1 extends
the result in [7] where input-to-state stability is assumed.

When system (2) is in the linear block-triangular form:

ẋ = Aix, i = 1, · · · , m (7)

where Ai =











(Ai)11 (Ai)12 · · · (Ai)1k

0 (Ai)22 · · · (Ai)2k

...
...

. . .
...

0 0 · · · (Ai)kk











, i = 1, · · · , m, x = (xT
1 , · · · , xT

k )T ∈ Rn, xj ∈ Rnj ,

j = 1, · · · , k, n1 + · · · + nk = n, (Ai)pq ∈ Rnp×nq , p = 1, · · · , k, q = p, · · · , k, we have the following
corollary which coincides with the result in [8].

Corollary 1. For ∀j = 1, · · · , k, if there exists a common quadratic Lyapunov function for system
ẋj = (Ai)jjxj , i = 1, · · · , m, then switched system (7) has a common quadratic Lyapunov function.
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3 Example

Consider the following switched nonlinear system
{

ẋ1 = fi1(x1, x2)

ẋ2 = fi2(x2)
, i = 1, 2 (8)

where x1 = (z1, z2)
T, x2 = (z3, z4)

T, f11 = (−5z1 − 2z2 + sin z3, 21z1 − 8z2)
T, f12 = (z4,−3z3 − 4z4)

T,
f21 = (−16z1 + 3z2 + sin z4,−52z1 + 9z2)

T, f22 = (z4,−2z3 − 3z4)
T.

Choose V2 = xT
2

(

5 1
1 2

)

x2, V1 = xT
1

(

7300/21 −100
−100 500/17

)

x1. It is easy to verify that conditions

in Theorem 1 are satisfied. Therefore, switched nonlinear system (8) is globally quadratically stable
under arbitrary switching. Fig. 1 shows the state response curve of system (8) under a switching law
randomly chosen.

Fig. 1 The state response of system (8)

4 Conclusion

A sufficient condition for globally quadratic stability of switched nonlinear systems in block-
triangular form has been presented. The result relaxes the requirement of the input-to-state stability
which has been commonly used in the literature. A common Lyapunov function is constructed by
using the Lyapunov functions of block-subsystems, which transforms the stability problem to that of
lower dimensional systems. The result can be easily extended to the stabilization problem for switched
nonlinear control systems in block-triangular form.
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