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Abstract Some results on linear system theory are reported. Based on these results, necessary
and sufficient conditions for the controllability and observability of both continuous-time and its
corresponding discrete-time multivariable linear time-invariant systems are presented.
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1 Introduction

When a multivariable linear time-invariant system is controllable and observable, does its corre-
sponding discrete system also have the same properties? This problem has drawn researcher′s attention
for a long time. In the 1st IFAC congress of 1960, Kalman proved a sufficient and necessary condition
for the controllability and observability of SISO system. In 1975, Guan and Chen proved a sufficient
condition for the controllability and observability of MIMO system. In 1987, Hu et al. proved a neces-
sary condition for the controllability and observability of MIMO system. In 1985, Ackermann proved
a sufficient and necessary condition for the controllability and observability of SISO system in another
form. Up to the present, the sufficient and necessary condition for the controllability and observability
of MIMO system has not been reported yet. This paper reports some new results on linear system
theory, and presents necessary and sufficient conditions for the controllability and observability of both
continuous-time and its corresponding discrete-time multivariable linear time-invariant systems.

2 System model and preliminaries

The dynamic equation of a multivariable linear time-invariant system can be represented as

{

Ẋ(t) = AX(t) + BU (t)

Y (t) = CX(t) + DU (t)
(1)

where X(t) ∈ Rn, U (t) ∈ Rp, Y (t) ∈ Rq (1 6 p, q 6 n) are the state, input and output vectors of
the system, respectively, and A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, D ∈ Rq×p are the system matrix,
input matrix, output matrix and feed-forward matrix of the system, respectively. The corresponding
discrete-time system (with the sampling period T ) of the dynamic (1) is

{

X((k + 1)T ) = Φ(T )X(kT ) + G(T )U (kT )

Y (kT ) = CX(kT ) + DU (kT )
(2)

where Φ(T ) = eAT, and G(T ) =
∫ T

0
eAτdτB.

The necessary and sufficient conditions of the controllability and observability of continuous-time
system {A, B, C, D} are

rank([B, AB,A2B, · · · , An−1B]) = n (3)

rank([CT, ATCT, (AT)2CT, · · · , (AT)n−1CT]) = n (4)

The necessary and sufficient conditions of the controllability and observability of discrete-time
system {Φ, G, C, D} are

rank([G, ΦG,Φ2G, · · · ,Φn−1G]) = n (5)

rank([CT,ΦTCT, (ΦT)2CT, · · · , (ΦT)n−1CT]) = n (6)

Lemma 1[1]. Suppose that the system {A, B, C, D} is controllable. Then, the necessary condition
of the discrete-time system {Φ, G, C, D} being controllable is that j2Kπ/T is not an eigenvalue of A,
where k is a non-zero integer, and j is the imaginary unit.
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Lemma 2[3]. Suppose that the system {A, B, C, D} is controllable (observable). Then the suffi-
cient condition of the discrete-time system {Φ, G, C, D} being controllable (observable) is that there is
no integer k except zero that can make (λ1 − λ2)T = 2Kπj hold for arbitrary two different eigenvalues
λ1 and λ2 of A.

Before we present the sufficient and necessary conditions for the controllability and observability
of both system {A, B, C, D} and system {Φ, G, C, D}, we present some results on linear system theory.

3 Results on linear system theory

Theorem 1. ∀A ∈ Rn×n, let ϕ(λ) be the minimal characteristic polynomial of A, and m be the
power of ϕ(λ). If m 6 n, then matrixes I, A, A2, · · · , Am−1 are linearly independent, where I is the
unit matrix.

Proof. Suppose that there exist m real numbers ki ∈ R(i = 0, 1, 2, · · · , m − 1) not all equal to 0
such that

k0I + k1A + k2A
2 + · · · + km−1A

m−1 = 0 (7)

Assume km−1 6= 0 (otherwise, assume km−2 6= 0, · · ·), and let αi = ki/km−1(i = 0, 1, 2, · · · , m − 2).
Then (7) can be rewritten in the following form

α0I + α1A + α2A
2 + · · · + αm−2A

m−2 + Am−1 = 0 (8)

In (8), the coefficient of the first term is 1 and the highest power is m − 1. This contradicts the
assumption that the power of ϕ(λ) is m. This ends the proof of Theorem 1. �

Theorem 2. ∀T ∈ R+, A ∈ Rn×n, let ϕ(λ) be the minimal characteristic polynomial of A, m be
the power of ϕ(λ), p(α) be the minimal characteristic polynomial of eAT and h(h 6 n) be the power of
p(α). Then, h 6 m.

Proof. Because deg[p(α)] = h, there exist h + 1 real numbers βi not all equal to 0 such that

β0 + β1e
AT + β2e

A2T + · · · + βheAhT = 0 (9)

According to the Cayley-Hamilton theorem

eAiT =

n−1
∑

j=0

γji(T )Aj, i = 1, 2, · · · , h (10)

Since ϕ(A) = 0, Am, Am+1, · · · , An−1 can be linearly represented by I,A, · · · , Am−1, (10) can be rewrit-
ten as

eAiT =
m−1
∑

j=0

αji(T )Aj, i = 1, 2, · · · , h (11)

Combining (11) and (9), we obtain

(

β0 +

h
∑

i=1

βiα0i

)

I +

(

h
∑

i=1

βiα1i

)

A + · · · +

(

h
∑

i=1

βiαm−1,i

)

Am−1 = 0 (12)

From Theorem 1 and the assumption made, we know that (12) holds when all its coefficients equal 0,
we obtain









1 α01 α02 · · · α0,h−2 α0,h−1 α0,h

0 α11 α12 · · · α1,h−2 α1,h−1 α1,h

...
...

...
...

...
...

0 αm−1,1 αm−1,2 · · · αm−1,h−2 αm−1,h−1 αm−1,h

















β0

β1

...
βh









=









0
0
...
0









(13)

(13) has at least 2 coefficients that can be arbitrarily selected when h > m + 1. Suppose there
are only 2 coefficients that can be arbitrarily selected, say βh−1, βh. Let (βh−1, βh) be (1, 1) and
(0, 1), respectively. According to the solution′s structure theory, (13) has two linearly independent
solutions (β′

0, β
′

1, · · · , β
′

n−2, 1, 1) and (β′′

0 , β′′

1 , · · · , β′′

n−2, 0, 1). Substituting these two solutions into (9)
and performing subtraction between them, we have

(β′

0 − β′′

0 )I + (β′

1 − β′′

1 )eAT + · · · + (β′

n−2 − β′′

n−2)e
A(h−2)T + eA(h−1)T = 0 (14)

In (14), the highest power is h − 1, the coefficient of the first term is 1 and the coefficients of other
terms are not all equal to 0. This contradicts the assumption that the power of p(α) is h. Thus, we
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have h 6 m. The same conclusion can be reached when there are more than 2 coefficients that can be
arbitrarily selected. This ends the proof of Theorem 2. �

Theorem 3. ∀T ∈ R+, A ∈ Rn×n, let ϕ(λ) be the minimal characteristic polynomial of A,
m be the power of ϕ(λ), p(α) be the minimal characteristic polynomial of eAA, and h be the power
of p(α). If the eigenvalues λ1, λ2, · · · , λs(s 6 n) of A are different from each other, and ϕ(λ) =

(λ − λ1)
m1(λ − λ2)

m2 · · · (λ − λs)
ms

(

s
∑

i=1

mi = m

)

, then the sufficient and necessary condition for

h = m is (λp − λq)T 6= 2Kπj(1 6 p < q 6 s; k = ±1,±2, · · ·).
Proof. Necessity. If h = m, then there exist a group of numbers β0, β1, · · · , βm(βm = 1) such

that
β0I + β1e

AT + β2e
A2T + · · · + βmeAmT = 0 (15)

According to the canonical form[2] of eAT, eAT can also be written in the following form

eAT =

s
∑

i=1

[pi0(A) + Tpi1(A) + · · · + T mi−1pi,mi−1(A)]eλiT (16)

where matrixes pij(A)(i = 1, 2, · · · , s; j = 0, 1, · · · , m − 1) are called the components of A, they are
linearly independent and none of them equal to 0. Using (16), we arrive at

I = lim
T→0

eAT =
s
∑

i=1

pi0(A) (17)

Combining, and, we obtain

m
∑

k=0

βk

s
∑

i=1

[pi0(A) + kTpi1(A) + · · · + (kT )mi−1pi,mi−1(A)]eλikT = 0 (18)

Since all pij(A) in (18) are linearly independent, the coefficients of the corresponding terms should be
equal to 0 to make the above equation hold. Because βm = 1, we obtain





















































1 eλ1T e2λ1T · · · e(m−1)λ1T

0 Teλ1T 2Te2λ1T · · · (m − 1)Te(m−1)λ1T

...
...

...
...

0 T m1−1eλ1T (2T )m1−1e2λ1T · · · [(m − 1)T ]m1−1e(m−1)λ1T

1 eλ2T e2λ2T · · · e(m−1)λ2T

0 Teλ2T 2Te2λ2T · · · (m − 1)Te(m−1)λ2T

...
...

...
...

0 T m2−1eλ2T (2T )m2−1e2λ2T · · · [(m − 1)T ]m2−1e(m−1)λ2T

...
...

...
...

1 eλsT e2λsT · · · e(m−1)λsT

0 TeλsT 2Te2λsT · · · (m − 1)Te(m−1)λsT

...
...

...
...

0 T ms−1eλsT (2T )ms−1e2λsT · · · [(m − 1)T ]ms−1e(m−1)λsT







































































































β0

β1

...
βm1−1

•

•

...
•

...
•

•

...
βm−1



















































=



















































−emλ1T

−mTemλ1T

...
−(mT )m1−1emλ1T

−emλ2T

−mTemλ2T

...
−(mT )m2−1emλ2T

...
−emλsT

−mTemλsT

...
−(mT )ms−1emλsT



















































(19)

It is easy to notice that the elements of the 2nd, 3rd, · · · , m1-th rows in the coefficient matrix are the
1st, 2nd, (m1 − 1)-th derivative of the corresponding elements in the 1st row with the independent
variable of λ1; the elements from the (m1 +2)-th row to the (m1 + m2)-th row in the coefficient matrix
are the 1st, · · · , (m2 − 1)-th derivatives of the corresponding elements in the (m1 + 1)-th row with the
independent variable of λ2, the elements from the (m−ms +2)-th row to the m-th row in the coefficient
matrix are the 1st, · · · , (ms − 1)-th derivatives of the corresponding elements in the (m − ms + 1)-th
row with the independent variable of λs, and so on. Obviously, (19) has an exclusive solution only if

its′ coefficient matrix is of full rank, i.e., eλpT 6= eλqT, this is equivalent to (λp − λq)T 6= 2Kπj(1 6
p < q 6 s; k = ±1,±2, · · ·).

Sufficiency: Assuming (λp − λq)T 6= 2Kπj, we can reach a result similar to equations (15)∼(19),
in which m is replaced by h. Denote X as the coefficient matrix of (19) (X has m rows and h columns),
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Y as the constant vector at the right of equal mark, and Z = [XY ] as the augmented matrix. Suppose
that h < m, then we can reach rank(X) = h and rank(Z) = h + 1 from (λp − λq)T 6= 2Kπj, and
therefore the solution of (19) does not exist. This contradicts the assumption that the power of eAT ′s
minimal polynomial is h. Combining this result with Theorem 2, we obtain h = m. This proves the
theorem. �

Theorem 4. ∀T ∈ R+, A ∈ Rn×n, if deg[ϕ(λ)] = deg[p(α)] = m(m 6 n), then the matrix group

I, A,A2, · · · , Am−1 and the matrix group I, eAT, eA2T, · · · , eA(m−1)T can linearly represent each other.
Proof. If deg[ϕ(λ)] = deg[p(α)] = m, according to the Cayley-Hamilton theorem and the deriva-

tion from (10) to (11), we can reach the result that eAiT(i = 0, 1, · · · , m−1) can be linearly represented
by I,A, · · · , Am−1.

In the following we prove that the converse proposition also holds.
Given kj ∈ R, j = 0, 1, 2, · · · , m − 1 assume

Ai = k0I + k1e
AT + k2e

A2T + · · · + km−1e
A(m−1)T, 0 6 i 6 m − 1 (20)

Similar to the derivation from (9) to (13), we obtain















1 α01 α02 · · · α0,m−1

0 α11 α12 · · · α1,m−1

· · · · · · · · · · · · · · ·
0 αi1 αi2 · · · αi,m−1

· · · · · · · · · · · · · · ·
0 αm−1,1 αm−1,2 · · · αm−1,m−1

































k0

k1

...
ki

...
km−1



















=



















0
0
...
1
...
0



















(21)

In the coefficient matrix of (21), the elements in the columns form 2 to m are the coefficients of
the Cayley-Hamilton expansion (see (11)) of eAiT(1 6 i 6 m − 1) respectively. When deg[ϕ(λ)] =
deg[p(α)] = m, we prove (by contradiction) that the m column vectors in the coefficient matrix of
(21) are linearly independent. Without loss of generality, suppose that the last column can be linearly
represented by other columns, i.e., there are m − 1 numbers βi ∈ R not all equal to 0 such that

















α0,m−1

...
αi,m−1

...
αm−1,m−1

















= β0















1
0
...
...
0















+ β1















α01

...
αi1

...
αm−1,1















+ · · · + βm−2

















α0,m−2

...
αi,m−2

...
αm−1,m−2

















(22)

From (22) we obtain


























α0,m−1 = β0 +

m−2
∑

j=1

βjα0j

αi,m−1 =
m−2
∑

j=1

βjαi,j , i = 1, 2, · · · , m − 1

(23)

Combining (23) and the Cayley − Hamilton expression of eA(m−1)T (see (11)), we see that

eA(m−1)T =

m−1
∑

i=0

αi,m−1(T )Ai = β0I +

(

m−2
∑

j=1

βjα0j

)

I +

m−1
∑

i=1

(

m−2
∑

j=1

βjαij

)

Ai =

β0I +

m−2
∑

j=1

(

m−1
∑

i=0

βjαijA
i

)

= β0I +

m−2
∑

j=1

βj

(

m−1
∑

i=0

αijA
i

)

=

β0I +
m−2
∑

j=1

βje
AjT = β0I + β1e

AT + β2e
A2T + · · · + βm−2e

A(m−2)T

Leting αj = −βj(j = 0, 1, · · · , m − 2), we obtain

α0I + α1e
AT + · · · + αm−2e

A(m−2)T + eA(m−1)T = 0 (24)
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(24) means deg[p(α)] < m, and this contradicts the assumption. Thus, the coefficient matrix of (21) is of

full rank. i.e., (20) has an exclusive solution, and Ai can be linearly represented by I, eAT, · · · , eA(m−1)T.
Notice that when i is ergodic on (0, 1, 2, · · · , m − 1), the left side of (21) keeps invariant and the row
of the only non-zero element is “1” accordingly ergodic on (0, 1, 2, · · · , m − 1). Therefore, the above
statement holds for all 0 6 i 6 m − 1. This ends the proof of Theorem 4. �

Corollary 1. ∀T ∈ R+, A ∈ Rn×n, if deg[ϕ(λ)] = deg[p(α)] = m(m 6 n), then the matrix group

I, A,A2, · · · , An−1 and the matrix group I, eAT, eA2T, · · · , eA(n−1)T can linearly represent each other.
Proof. If m = n, then it is just Theorem 4. If m < n, then I, A, · · · , Am−1 and I,A, · · · , An−1 can

linearly represent each other; also, I, eAT, · · · , eA(m−1)T and I, eAT, · · · , eA(n−1)T can linearly represent
each other. Thus I,A, · · · , An−1 and I, eAT, · · · , eA(n−1)T can linearly represent each other. This ends
the proof Corollary 1. �

Corollary 2. ∀T ∈ R+, A ∈ Rn×n, if arbitrary two different latent roots of A, namely λp and λq,
satisfy (λp − λq)T 6= 2Kπj(1 6 p < q 6 s; k = ±1,±2, · · ·), then the matrix group I,A, · · · , An−1 and

the matrix group I, eAT, · · · , eA(n−1)T can linearly represent each other.
Proof. According to Theorem 3, Theorem 4 and Corollary 1, we see that Corollary 2 holds. �

4 Main results

Theorem 5. ∀A ∈ Rn×n, let λ1, λ2, · · ·λs be the latent roots of A and they are different from
one another. Suppose that the continuous system {A, B, C, D} is controllable. Then, the necessary and
sufficient condition for the corresponding discrete system {Φ, G, C, D} (with sampling period T ) being
also controllable is: for an arbitrary non-zero integer k, the following two inequalities hold:

1) λpT 6= 2kπj, p = 1, 2, · · · , s (25)

2) (λp − λq)T 6= 2kπj, 1 6 p < q 6 s (26)

Proof. Necessity. Combining Φ(T ) = eAT, G(T ) =
∫ T

0
eAτdτB and V = [G, ΦG, · · · ,Φn−1G],

and considering eAT
∫ T

0
eAτdτ =

∫ T

0
eAτdτeAT, we obtain

V =

∫ T

0

eAτdτ [B, eATB, · · · , eA(n−1)TB] (27)

Obviously, if the discrete system is controllable, then we must have rank(V ) = n. This is equivalent to

rank

(
∫ T

0

eAτdτ

)

= n (28)

rank([B, eATB, · · · , eA(n−1)TB]) = n (29)

Given λi as the latent roots of A, (28) is equivalent to λiT 6= 2kπj(k = ±1,±2, · · ·)[1].
Since the continuous system {A, B, C, D} is controllable, we have that rank([B, AB, · · · , An−1B]) =

n. According to the Cayley − Hamilton theorem, I, eAT, · · · , eA(n−1)T can be linearly represented by
I, A, · · · , An−1, thus we obtain rank([B, eATB, · · · , eA(n−1)TB]) 6 rank([B, AB, · · · , An−1B]) = n.

If rank([B, eATB, · · · , eA(n−1)TB]) > rank([B, AB, · · · , An−1B]) = n holds, i.e., (29) holds, then

I, A, · · · , An−1 can be linearly represented by I, eAT, · · · , eA(n−1)T. According to Corollary 2, (λp −
λq)T 6= 2kπj(1 6 p < p 6 s) must hold. This proves the necessity.

The proof for Sufficiency is seen in [3]. �

Theorem 6. ∀A ∈ Rn×n, let λ1, λ2, · · · , λs be all the latent roots of A which are different from
each other. Suppose that the continuous system {A, B, C, D} is observable. Then, the necessary and
sufficient condition for the corresponding discrete system {Φ, G, C, D} (with sampling period T ) being
also observable is: for an arbitrary non-zero integer k, the inequality (λp −λq)T 6= 2kπj(1 6 p < q 6 s)
holds.

Proof. Notice that all the different latent roots of AT are λ1, λ2, · · · , λs, and Φ
T = eATT holds.

Similar to the proof of Theorem 5, this theorem can be proven utilizing Corollary 2. �

Theorem 7. ∀A ∈ Rn×n, let λ1, λ2, · · · , λs be the latent roots of A which are different from
each other. Suppose that the continuous system {A, B, C, D} is controllable and observable. Then,
the necessary and sufficient condition for the corresponding discrete system {Φ, G, C, D} being also
controllable and observable is: for an arbitrary non-zero integer k, both inequality (25) and inequality
(26) hold at the same time.

Proof. Combining Theorem 5 and Theorem 6, we can reach Theorem 7. �



No. 5 WANG Cheng-Hong et al.: On Controllability and Observability of Multivariable · · · 667

References

1 Hu Shou-Song. Automatic Control Theory (revised edition), 2nd volume. Beijing: National Defence Industry
Press, 1987, 38∼72

2 Suda Sinnei, Kodama Sinnsann, Ikeda Masao. Matrix Theory in Automatic Control (Translated by Cao
Changxiu). Beijing: Science Press, 1979, 247∼360

3 Guan Zhao-Zhi, Chen Han-Fu. On the Controllability and Observability of Linear Control System. Beijing:
Science Press, 1975, 20∼90

4 Wolovich W A. Linear multivariable systems. In: Applied Mathematical Sciences q, Springer-Verlag, 1974,
30∼101

5 Kalman R E. On the general theory of control systems. In: Proceedings of the First IFAC Congress, Moscow,
1960. 1: 481∼492

WANG Cheng-Hong Received his master degree from China University of Mining and Technology in
1988, and his Ph. D. degree from the Institute of Automation, Chinese Academy of Sciences in 1997. Since
1999, he has been with Division III of Information Science Department, National Natural Science Foundation
of China, where he works as a professor and director. His research interests include control theory, reliability
theory, complex system theory, and operational research.

SONG Su Received his master and Ph.D. degrees from Harbin Engineering University in 1992 and 1997,
respectively. He works as a professor in Division III of Information Science Department, National Natural Science
Foundation of China. His research interests include adaptive control and complex system theory.

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

2006 IEEE
World Congress on Computational Intelligence

A Joint Conference of the International Joint Conference on Neural Networks (IJCNN)
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

and IEEE Congress on Evolutionary Computation (CEC)

July 16-21, 2006
Sheraton Vancouver Wall Centre, Vancouver, BC, Canada

Call for Contributed Papers

IJCNN 2006 solicits papers from all topics in neural networks, including, but not limited to:
-supervised, unsupervised & reinforcement learning,
-neuroinformatics,
-computational neuroscience,
-neural dynamics & complex systems,
-connectionist cognitive science,
-neural optimization & dynamic programming,
-kernel methods,
-graphic models,
-embedded neural systems,
-autonomous mental development,
-neural control & cognitive robotics,
-hybrid intelligent systems,
-data analysis & pattern recognition,
-image & signal processing,
-hardware implementation, and
-real-world applications.

FUZZ-IEEE 2006 solicits papers from all topics in fuzzy systems, including, but notlimited to:
-fuzzy logics & fuzzy set theory,
-fuzzy-neuro-evolutionary hybrids,
-fuzzy optimization & design,
-fuzzy system architectures & hardware,
-fuzzy pattern recognition & image processing,
-fuzzy control & robotics,
-fuzzy data mining & forecasting,

(Continued on Page 798)


