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Abstract For discrete-time T-S fuzzy systems, the stability and controller design method are in-
vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems differ from
non-fuzzy systems with polytopic description or multi-model description in that the weighting coef-
ficients have respective meanings. They, however, have stability aspect in common. By adopting a
stability condition for polytopic systems obtained via PDLF, and combining the properties of T-S
fuzzy systems, new results are given in this paper. An example shows that by applying the new
results, the stability conditions that can be distinguished are less conservative.
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1 Introduction

In recent years, T-S fuzzy control method has been receiving increasing attention. The main

reason is that this method does not apply the accurate model but rather a rule-based model set. If

any possible system response is included in the responses for all sub-models in the set, then studying

the stability of the original system will turn to be that of an artificial system based on the model set.

Especially, if all the sub-models are linear, which is true in many investigations[1∼5] , T-S method will

bring much convenience for design and analysis.

The earlier investigations for stability of T-S fuzzy systems (such as [2], [4], etc.) gave the common

Lyapunov function for all sub-models in the model set, which has large conservativeness. [1] and [3]

gave fuzzy Lyapunov functions for continuous and discrete models, respectively. If the common Lya-

punov function is quadratic, then the corresponding fuzzy Lyapunov function is a linear combination

of a set of quadratic functions, with the time-varying combining coefficients calculated by the grade of

membership. Actually, the results in [1] and [3] were simultaneously suitable to time-varying and uncer-

tain coefficients, so are equivalent to the investigations in the non-fuzzy systems such as systems with

polytopic description and multi-model description[6,7]. Due to this equivalence, the stability conditions

of discrete systems given in [7] are less conservative than those in [3]. This paper further studies the

stability properties of discrete fuzzy systems to obtain less conservative stability results and controller

design method.

2 Discrete T-S fuzzy control systems and some existing stability results

Consider a discrete T-S fuzzy system, with its ith rule described as:

Ri : IF z1(k) is M i
1 and . . . and zp(k) is M i

p, THEN x(k + 1) = Aix(k) + Biu(k) (1)

where i = 1, 2, · · · , r with r being the number of rules; z(k) = [z1(k), · · · , zp(k)]T is the premise variable

of the system; x(k) ∈ <
n, u(k) ∈ <

m are measurable state and input respectively; Ai, Bi are matrices

with proper dimensions. The linear state-space equation corresponding to Ri is called sub-model i.

Denote x(k) = xk, u(k) = uk, z(k) = zk. Then the overall model of the system is represented as:

xk+1 =
r

∑

i=1

ωi(zk)(Aixk + Biuk) = A(zk)xk + B(zk)uk

A(zk) =
r

∑

i=1

ωi(zk)Ai, B(zk) =
r

∑

i=1

ωi(zk)Bi (2)
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ωi(zk) =

p
∏

j=1

M i
j (zj(k))

/ r
∑

i=1

p
∏

j=1

M i
j(zj(k)), 0 6 ωi(zk) 6 1,

r
∑

i=1

ωi(zk) = 1 (3)

where M i
j (zj(k)) is the grade of membership of zj(k) in M i

j . For the open-loop system

xk+1 =
r

∑

i=1

ωi(zk)Aixk = A(zk)xk (4)

the common Lyapunov function has the form V (xk) = x
T
k Pxk, where P is a symmetric positive

matrix[2,4], while the fuzzy Lyapunov function has the form[3]:

V (xk, zk) = x
T
k P (zk)xk, P (zk) =

r
∑

i=1

ωi(zk)Pi, Pi = PT
i > 0 (5)

For open and closed-loop fuzzy systems, [3] obtains stability results which are less conservative

than [2,4].

Theorem 1[3]. If there exist symmetric positive matrices Pi such that

AT
i PlAi − Pi < 0, ∀i, l = 1, 2, · · · , r (6)

then system (4) is globally asymptotically stable.

Theorem 2[3]. For system (1)∼(3), the following control law is adopted

uk =

r
∑

i=1

ωi(zk)Fixk (7)

If there exist symmetric positive matrices Pi such that

[

Pi GT
iiPl

PlGii Pl

]

> 0, i, l = 1, 2, · · · , r;

[

(Pi + Pj)/2 MT
ijPl

PlMij Pl

]

> 0, i < j 6 r (8)

where Mij = (Gij + Gji)/2, Gij = Ai + BiFj , then the closed-loop system is globally asymptotically

stable.

3 New stability results for discrete T-S fuzzy control systems

Consider the following dynamic uncertain discrete system

xk+1 = A(ξk)xk, A(ξk) =
r

∑

i=1

ξi(k)Ai, 0 6 ξi(k) 6 1,
r

∑

i=1

ξi(k) = 1 (9)

where ξi(k) are utterly unknown, time-varying bounded parameters; other notations are the same as in

(4). Apparently, there is essential difference between ξi(k) and ωi(zk). For (9), [7] gave the following

stability result.

Lemma 1[7]. If there exist properly dimensional symmetric positive matrices Pi and matrices Ti

such that
[

Ti + TT
i − P−1

i TT
i AT

i

AT
i Ti P−1

l

]

> 0, ∀i, l = 1, 2, · · · , r (10)

then system (9) is globally asymptotically stable, while the Lyapunov function can be taken as V (xk, ξk)

=
r

∑

i=1

ξi(k)xT
k Pixk.

Condition (10) can be applied to discrete T-S fuzzy systems as follows.

Theorem 3. If there exist properly dimensional symmetric positive matrices Pi and matrices Ti

such that (10) is satisfied, then the T-S fuzzy system (4) is globally asymptotically stable, with (5) as

the corresponding Lyapunov function.

Let Ti = Pi, then (10) is equivalent to (6)[8]. Hence, compared with (6), (10) represents a less

conservative condition although it requires more computation. Applying (10), the closed-loop stability
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of T-S fuzzy control system under (7) can be further analyzed. For this, denote the closed-loop system

as

xk+1 =
r

∑

i=1

r
∑

j=1

ωi(zk)ωj(zk)(Ai + BiFj)xk =
r

∑

i=1

r
∑

j=1

ωi(zk)ωj(zk)Gijxk = G(zk, zk)xk (11)

By comparing (11) with (4), the following result can be obtained directly applying Theorem 3.

Theorem 4. For system (1)∼(3) adopting control law (7), if there exist properly dimensional

symmetric positive matrices Pij and matrices Tij such that

[

Tij + TT
ij − P−1

ij TT
ij GT

ij

GijTij P−1
ls

]

> 0, ∀i, j, l, s = 1, 2, · · · , r (12)

then the closed-loop system is globally asymptotically stable, with the corresponding Lyapunov function

as follows

V (xk, zk, zk) = x
T
k P (zk, zk)xk =

r
∑

i=1

r
∑

j=1

ωi(zk)ωj(zk)xT
k Pijxk (13)

Similar to the open-loop case, Theorem 4 introduces more free variables. Hence, although it

increases computational burden, Theorem 4 gives less conservative conditions than Theorem 2.

Corollary 1. For system (1)∼(3) adopting control law (7), if there exist properly dimensional

symmetric positive matrices Pi and matrices Tij such that

[

Tij + TT
ij − [(Pi + Pj)/2]

−1 TT
ij GT

ij

GijTij [(Pl + Ps)/2]
−1

]

> 0, ∀i, j, l, s = 1, 2, · · · , r (14)

then the closed-loop system is globally asymptotically stable, with the corresponding Lyapunov function

as follows

V (xk, zk, zk) =
r

∑

i=1

r
∑

j=1

ωi(zk)ωj(zk)xT
k (Pi + Pj)xk (15)

Proof. In (12), (13), let Pij = (Pi + Pj)/2, i, j = 1, 2, · · · , r. Then (14), (15) can be obtained. �

Remark 1. (10) gives linear matrix inequalities (LMIs) with 2r variables Ti, P
−1
i , i = 1, 2, · · · , r,

(12) gives LMIs with 2r2 variables Tij , P
−1
ij , i, j = 1, 2, · · · , r, and (14) gives inequalities with (r2 + r)

variables Tij , Pi, i, j = 1, 2, · · · , r. (14), which does not give LMIs, presents stability conditions more

conservative than (12). This shows that although it only needs r positive matrices, applying (15) as

Lyapunov function brings inconvenience.

All the above discussions are for the case with Fi given, i = 1, 2, · · · , r. If Fi are not known and

need to be solved, then (8) and (12) in this paper and (11)∼(13) in [3] are not LMIs any more, since

they do not satisfy the superposition principle. To solve this problem, let Tij = Tj in (12) and the

following conclusion can be obtained:

Corollary 2. For system (1)∼(3) adopting control law (7), if there exist properly dimensional

symmetric positive matrices Pij and matrices Tj , Yj such that

[

Tj + TT
j − P−1

ij Y T
j BT

i + TT
j AT

i

AiTj + BiYj P−1
ls

]

> 0, ∀i, j, l, s = 1, 2, · · · , r (16)

then the closed-loop system is globally asymptotically stable with the corresponding fuzzy controller

feedback gains Fj = YjT
−1
j .

(16) gives LMIs with 2r + r2 variables Tj , Yj , P
−1
ij , i, j = 1, 2, · · · , r. By the results in this paper,

judging the stability is equivalent to judging the feasibility of the LMIs. For example, adopting Corollary

2, judging the stability is reduced to: if there exist corresponding Pij , Tj , Yj such that (16) is satisfied;

that is, if the following problem has a feasible solution, then the corresponding Fj = YjT
−1
j exist that

globally asymptotically stabilizes the closed-loop system:

find Pij , Tj , Yj , s.t. (16) (17)
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4 A comparison example

We directly consider the T-S fuzzy model in [3]. The fuzzy system (1)∼(3) consists of the following

two rules:

R1 : IF z(k) is about 0, THEN x(k + 1) = A1x(k) + B1u(k)

R2 : IF z(k) is about π or − π, THEN x(k + 1) = A2x(k) + B2u(k)

where z(k) = x2(k) − 2
11x1(k),

A1 =





15/11 0 0

−4/11 1 0

0 0 1



 , A2=





15/11 0 0

−4/11 1 0
0.04
11π −

2
11θ −

0.02
π + θ 1



 , θ ∈ [−20, 20], B1 =B2 =





−5/7

0

0



 (18)

For θ = 3, 19, the stability cannot be judged by the three methods listed in the simulation part of [3].

However, by Corollary 2 in this paper the stability can be judged, that is to solve (17) to obtain the

feasible solution, which shows that the closed-loop system is stable:

For θ = 3, F 1 = [4.8775, −9.5916,−2.0007] and F 2 = [4.8779, −9.5938,−2.0011];

For θ = 19, F 1 = [4.5282, −8.3837,−0.2674] and F 2 = [4.5469, −8.4487,−0.2695].

This shows that the results in this paper make the stability judging conditions for T-S fuzzy

control systems more relaxed.

5 Conclusions

New stability results for T-S fuzzy control systems are obtained applying parameter-dependent

Lyapunov function, and the stability judging conditions for T-S fuzzy control systems are more relaxed.

Further investigations include stability synthesis of optimization-based control (optimal control, predic-

tive control[5], etc.) for T-S fuzzy model. With the stability conditions in (16), there is much freedom

for choosing the control law. Other investigations include stability, domain of attraction for constrained

system, for which the results in this paper can serve as a basis.
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