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Abstract Production scheduling is critical to manufacturing system. Dispatching rules are usually

applied dynamically to schedule the job in a dynamic job-shop. Existing scheduling approaches sel-

dom address machine selection in the scheduling process. Composite rules, considering both machine

selection and job selection, are proposed in this paper. The dynamic system is trained to enhance its

learning and adaptive capability by a reinforcement learning (RL) algorithm. We define the concep-

tion of pressure to describe the system feature. Designing a reward function should be guided by the

scheduling goal to accurately record the learning progress. Competitive results with the RL-based

approach show that it can be used as real-time scheduling technology.
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1 Introduction

Scheduling problems essentially involve completing a set of jobs with a limited number of manu-

facturing resources under a number of constraints to optimize a particular objective function. These

problems are known to be hard and usually belong to the NP-complete class of problems[1]. For the case

of an actual shop floor, uncertainties (i.e., machine breakdowns, material or tool shortages, transporta-

tion delays, etc.) complicate the scheduling problem, making it more difficult to solve. Thus, a dynamic

scheduling system is more suitable to production application than the static one. The main difference

of the dynamic and static scheduling algorithms is that the dynamic one requires more robustness and

rapid reactivity to the changing environment.

Dispatching rules (DRs) are the most common approach in the dynamic scheduling system[1∼5].

Use of dispatching rules is attractive because of their simplicity, low computation complexity and ease

of implementation. A dispatching rule is concerned with selecting a job to be processed based on some

criteria. It can realize the close-loop controlling of production process with one criterion. Rule-based

scheduling is of the typical dynamic controlling scheme.

Enhancing the learning and adaptive capability of scheduling system has not received much at-

tention. Although the dispatching rules do not guarantee an optimal schedule, they usually provide a

reasonably good schedule. For the scheduler, making good decisions will significantly help to improve

the scheduling performance. To use DRs appropriately for sequencing jobs, dynamic rule selection is

required since the manufacturing shop status may change over time. A knowledge-based rule selec-

tion system can be used to rapidly respond to the changes of the shop status. However, the existing

knowledge-based systems have the shortcoming that knowledge is acquired based on the use of off-line

machine learning techniques. In addition, every resource selects the rules based on the same knowledge

bases at the same period of time. Each resource unit should have its own knowledge base for DR

selection.

Zhang et al.
[6] applied TD(λ) to a job-shop scheduling problem. The scheduling approach was an

iterative repair-based scheduling method that started with generating a critical complete schedule by

ignoring the resource constraints and incrementally repairing the schedule to find a shortest conflict-free

schedule. Aydin et al.
[7] proposed an intelligent agent-based scheduling system. They employed Q-III

to train the agents to dynamically select dispatching rules. Their state determination criteria consist
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of the mean slack time of the queue and the buffer size of the machine. They take advantage of domain

knowledge and experience in the learning process. Therefore, the principal learning mechanism of RL

algorithm is omitted. Wang et al.
[8] applied Q-learning to single machine job scheduling problem and

provided recommendations for factor settings of RL. The literature review indicates that there has been

little work on creating intelligent scheduling systems with a learning ability actually based on trial and

error. In this paper, reinforcement learning is adopted for the dynamic scheduler to improve the on-line

learning and adaptive capability.

2 Model of dynamic job-shop scheduling problem

The job-shop scheduling problem (JSP) is a general scheduling type that may be described as

follows: given n jobs, each composed of several operations that must be processed on m machines.

Each operation uses one of the m machines for a period of duration. Each machine can process at most

one operation at a time and once an operation initiates processing on a given machine it must complete

processing on that machine without interruption.

The processing times and inter-arrival times are defined according to a uniform distribution varying

between G1 and G2. The due date DDi of job i with release time gi and processing time pij is determined

as

DDi = gi + k

m
∑

j=1

pij , k ∈ [−1, 4] (1)

where DDi, gi, m, k and pij represent due date, arrival time, the number of operations, coefficient of

tightness, and processing time of ith operation, respectively. Since k can take on negative values, we

may have jobs that are already tardy when they become available. This is often the case in industrial

situations where a job may be delayed in preceding stages of the manufacturing process.

The mean tardiness of finished jobs for the scheduling system is T̄ = 1
n

n
∑

i=1

Ti. Mean tardiness (T̄ )

is selected as the performance criterion for measuring the efficiency and effectiveness of our scheduling

system. The tardiness of job i is Ti = max{Ci − DDi, 0}. The lateness of job i is defined as Li =

Ci−DDi, where Ci is the completed time of job i, DDi represents the due date of job i. Tardiness is the

positive part of lateness, so the lateness is used to predict the scheduling performance when scheduling

is in the preceding stage. To describe the intermediate feature of scheduling system, we introduce two

new definitions to determine status of the scheduling system. At each scheduling moment, the two

definitions are used as follows.

Definition 1. The estimated mean remaining processing time (EMRT) is defined as

EMRT =
1

n

n
∑

i

u
∑

j=1

pij (2)

Definition 2. Each time when the resource of scheduling system changes is considered as a

scheduling moment.

Definition 3. The estimated mean lateness (EMLT) is defined as

EMLT =
1

n

n
∑

i=1

[

µ
∑

j=1

pij − (DDi − schedule timei)

]

(3)

In (2) and (3), u is the number of unfinished operations of job i and schedule timei is the current

scheduling time of job i.

3 Constructing new composite rules

Existing scheduling rules seldom address machine selection[5∼9]. The often occurrence is that

machine selection is based on random or on some given sequence. However, dynamic events, such as

random job arrivals, machine breakdown/repair, and different cost of finishing the same operation with

different machines, make machine selection critical for scheduling system in the case of heavy loading

and tight due date limitation[10]. These motivate us to use the dispatching rule for machine selection.
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Three new two-step scheduling rules, named as composite scheduling rules, are proposed. We call them

rule 0, rule 1 and rule 2. Rule 0: at first step, the scheduling system selects the job with the smallest

CR (critical ratio) value (i.e., according to CR rule). Then the job is entailed to the machine with the

earliest finish time (EFT) to finish its operation on this machine. Rule 1: the scheduler first selects a

job which first comes to the scheduling system, then the machine which may finish its operation with

EFT has the highest priority rating for selection. Rule 2: the machine with the earliest available time

is selected at first. This strategy is mainly to reduce machine′s idle time and improve the scheduling

performance. At the second step, a job with EFT on the selected machine is scheduled among the

available jobs.

At each scheduling moment, a composite rule is selected out for scheduling the job and machine.

If it is assumed that the job-shop problem has m machines and n jobs, then the dimension of a complete

schedule represented by the rule set will be m ∗ n.

4 Q-learning application to composite rule selection

RL is on-line actor critic method in machine learning[11,12] . The interaction of a learning system

with the environment is its major source of intelligence. SARSA and Q-learning have been adopted

widely to optimize the learning system for they are model free. Most RL algorithms iteratively improve

estimates of value functions based on samples of transitions obtained on-line. For example, at each

time step t, the typical tabular learning algorithm updates the value of the current state-action pair

(st, at) based on the observed reward r and the next state-action pair (s′, a′), as

Q(st, at)← (1− α)Q(st, at) + α(r + γ max
a′∈A

Q(s′, a′)) (4)

where α is the learning rate, γ is the discount coefficient.

Reinforcement learning is a dynamic programming approach for the dynamic scheduling problem

of discrete events. According to the principle of dynamic programming, the key to realize an effective

learning is how to formulate a scheduling problem into an RL problem. The sub-problems include:

setting state determination criterion, constructing the policy table, developing the reward function and

applying an effective strategy for the state search.

4.1 State determination criteria

The key to application of dynamic programming is to identify the states character of multi-stage

decision. Proper choice of state variable is essential for the dynamic programming problem. State

variable should express accurately the current situation of the system and different stages should have

different state description. So, in the Q-learning algorithm, we define a novel state variable to describe

the state of dynamic scheduling environment.

When the system is under heavy loading conditions and jobs are assigned with very tight due dates,

most of the jobs will be tardy. The estimated mean lateness (EMLT) grows gradually as scheduling

actions are executed one by one. Contradictorily, the estimated mean remained processing time (EMRT)

becomes smaller and smaller. The scheduling system has much pressure to finish the processing task

as fast as possible. We present a novel state determination criterion in which state is defined based on

the concept of pressure. Pressure, denoted by the ratio of EMLT and EMRT, is given as follows

pressure =
EMLT

EMRT + δ
(5)

We calculate the pressure by dividing EMLT by EMRT and δ. In (5), δ is a constant in order to

avoid being divided by 0.

Each state of different stage is defined uniquely by this state variable. The concept of pressure

may accurately describe the current situation at each scheduling moment. The only one variable,

pressure, provides two variables′ information (i.e., EMLT and EMRT). Another advantage of using this

description of state is that this strategy may save the memory of computation for Q-value table. Table

1 provides an example of a policy table with 6 states determined by pressure.

In Table 1, d is the adjustable coefficient that makes the continuous state being partitioned into

states. Using few number of states may cause the scheduler unable to differentiate between the decisions
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since they lie within the same range. The use of more ranges in the reward function permits the reward

or penalty associated with each decision to be expressed more precisely. However, using too much

number of states will lead search to slow convergence into optimum.

Table 1 An example of a 6-state policy table

State State determination criteria Rule 0 Rule 1 Rule 2

0 if(Pressure<0) s = 0; Q(0, 0) Q(0, 1) Q(0, 2)

1 if(Pressure>=0&&Pressure<d) s = 1; Q(1, 0) Q(1, 1) Q(1, 2)

2 if(Pressure>= d&&Pressure< 2∗d) s = 2; Q(2, 0) Q(2, 1) Q(2, 2)

3 if(Pressure>= 2∗d&&Pressure< 3∗d) s = 3; Q(3, 0) Q(3, 1) Q(3, 2)

4 if(Pressure>= 3∗d&&Pressure< 4∗d) s = 4; Q(4, 0) Q(4, 1) Q(4, 2)

5 if(Pressure>= 4∗d) s = 5; Q(5, 0) Q(5, 1) Q(5, 2)

4.2 Developing the reward function

The reward function using the grading method is widely used in the literature.

rt =











1 good states

−1 bad states

0 other states

(6)

Mean tardiness of finished jobs can be calculated only after scheduling finishs. If this grading

method of formula (6) is adopted as the reward function for evaluating states, the reward value will

be null during the intermediate states of the scheduling process. This will lead search to a random

procedure for the nonterminal states of scheduling.

Designing a reward function should be guided by the goal of the learning system. In this study, the

scheduling objective is to minimize the mean tardiness of finished jobs. Therefore, jobs′ EMLT is used

to determine the amount of reward or penalty for the scheduler′s decision (composite rules selection).

The larger EMLT is, the greater the penalties assigned to the learning system. When the EMLT value

is negative, it is predicable that the scheduling system will finish the production task without delay.

Then the learning system is rewarded. Therefore, jobs′ EMLT is used for designing the reward function

as follows.

rt = e− q · EMLT (7)

where e and q are constants of positive value for regulating EMLT to the reward received by the learning

system. The formula (7) turns the minimum problem for EMLT into the process of maximizing reward.

This reward function helps to differentiate the performance of different actions in the same state.

4.3 Action selection policy

There are two types of strategies to select actions. One is called exploration that an action is

determined randomly to try various actions and state transitions. The other is called exploitation

that for each possible action its next state is searched, and the action is selected which produces the

maximum sum of the reward and the value of the next state, after learning.

The ε-greedy method is adopted in our study. The ε-greedy action selection is used because of its

simplicity and it often ensures a sufficient exploitation/exploration balance. A policy is called greedy

with respect to some action value function Q(s, a) if in each state it selects one of the actions that has

the maximum value:

πt(s, a) = arg max
a′∈A

Q(s, a′) (8)

4.4 Searching stop condition

There are two different factors that determine the utility of an action. These are the immediate

reward, and the action value of the state to which a transition occurs as a result of that action. When

a system visits a state, an action with the highest (or lowest for minimization) action value is chosen

(i.e., using greedy policy). Initially, the action values for all state-action pairs are assigned arbitrary

equal values (usually zeros). When visiting a state for the first time, and several other times during the

initial learning phase, the learning system explores the environment by taking random actions. As the



No. 5 WEI Ying-Zi et al.: A Reinforcement Learning-based Approach to Dynamic · · · 769

system revisits the state, the Q-learning algorithm selects the action based on the current action values.

If a good state is brought upon the action of certain rule, the Q-learning will reinforce the rule for this

state. As good actions are rewarded and bad actions are punished over time, for every state, the action

values of a smaller subset (one or more) of the actions tend to grow and other diminish. The learning

phase ends when a clear trend appears with one or more actions in every state being dominant.

5 Experimental results

Compared with the simulation example provided by Aydin et al.
[7], our scheduling problem has

more calculation complexity than theirs. The problem is to organize the execution of 15 jobs on 9

different machines. The processing time and inter-arrival time are the number distributed uniformly

over the interval[2,9].

Table 2 lists the comparison result of rule-based scheduling performance. It shows that signifi-

cant improvement to the scheduling performance can be achieved through the use of simple machine

selection rules. The curve of Q-learning performance fluctuates very large in Fig. 1. For combinatorial

optimization problems, even one bad explore step will affect the results heavily. However, the tendency

of performance curve is descending, which results from the search balance of explore and exploit. The

fluctuation is helpful for the learning system to find better results. In Table 3, the data are the aver-

age values obtained by the program running 10 times. The performance of the Q-learning scheduler

was tested with respect to various values of k. At the end of training, the Q-learning approach gave

better results than the aforementioned alternatives. The only one item over which conventional rules

have superiority is computation time. However, in our experience of cooperating with real-world man-

ufacturers, one second and ten seconds actually do not make huge difference to them, for them both

satisfy the requirement of real dynamic scheduling. Action selection based on the ε-greedy strategy

was implemented, in which ε is gradually changed from a big value to a small one during the learning

process. When ε equals 0, the search process will converge fast to an optimal solution. This shows the

robustness and convergence of RL. Fig. 2 illustrates a scheduling Gantt diagram which shows the high

machine occupy rate and compact working procedure.

Table 2 Comparison of rule-based scheduling performance

CR FCFS EFT

Dispatching rule 86.43 50.47 42.56

Composite rule 30.87 32.33 28.73

Fig. 1 Performance curve of Q-learning scheduling approach
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Table 3 Experimental results of dynamic job-shop problem with 9 jobs and 15 machines

Rule List
k

k = 1 k = 1.2 k = 1.5 k = 2

Rule 0 30.87 23.73 9.13 0

Rule 1 32.33 26.87 11.07 1.2

Rule 2 28.73 23.27 8.47 0

Rules random combined 31.13 24.82 11.55 0.17

Q learning 28.20 22.24 8.67 0

Fig. 2 Scheduling Gantt diagram of 15 jobs and 9 machines

According to the simulation experiment using Borland C++ DOS programming environment on

the PentiumIV1.5GHz and RAM128MHz computer, a satisfying solution will be obtained in 12 seconds

through Q learning approach. This indicates that methods we present here have the high effectiveness

and efficiency to solve dynamic scheduling problem.

6 Conclusions and future research

Due to complexity in the manufacturing system, most applicable scheduling system is based on

rules scheduling. In this paper, we present an iterative optimization framework for dynamic scheduling

system using reinforcement learning. This study not only investigates the main effects of reinforcement

learning application, but also extends RL algorithm to the field of production scheduling. Our main

idea is to define an intermediate state variable to describe the whole scheduling process. This idea is

original for RL system to break the limitation that RL only evaluates terminal states of scheduling

system. Q-learning algorithm is model free, so it is suitable for most problems for searching optimal

states whose states transition depends on a scheduler. The Q-learning based approach seems promising

for developing a versatile on-line learning scheduler in future.

As the scheduling objective is to minimize mean tardiness in this research, the state determina-

tion criterion and reward function are both built based on mean tardiness. If the goal of Q-learning

scheduling changes, the state determination criterion and reward function should be modified accord-

ingly. For Q-learning algorithm, greedy action selection will lead searching to a fast convergence. But

the optimal solution may be a local optimum. Future research will address the global optimization for
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RL algorithm based on the mechanism of parallel search. An alternative approach is to combine the

ability of on-line local optimization by RL with the asynchronous global combinational optimization by

genetic algorithm.
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