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Abstract A new sliding mode controller design method is proposed for a class of system with mis-

matched uncertainties such that the dynamic function restricted on the sliding surface is completely

insensitive to the uncertainties. A sufficient and necessary condition which the system possessing

this sliding mode controller should satisfy is explicitly presented. The issue of chattering free is also

explored. It is concluded that this class of mismatched term does not bring any chattering problem.

Finally, a numerical example illustrates the developed method.

Key words Sliding mode control (SMC), uncertain system, mismatched uncertainty

1 Introduction

In recent years, sliding mode control (SMC) as a powerful control strategy has been widely studied

and applied to the linear system with matched uncertainties[1]. But for the system with mismatched

uncertainties only a few contributions have been made[2∼6].

In this paper the method presented in [2] is explored further and then extended to a class of more

general systems. A new sufficient and necessary condition is proposed for the existence of such a sliding

surface on which the sliding motion is immune to the mismatched uncertainties. The new condition

explicitly indicates the property the mismatched uncertainties should possess. At last, a numerical

example demonstrates the efficacy of the presented results.

The notations throughout the paper are standard. A∗ and AT denote the conjugate transpose and

transpose matrix of matrix A, respectively. ‖A‖ denotes the spectral norm of matrix A. M > 0 means

that M is a symmetric positive-definite matrix. M⊥ represents the orthogonal complement matrix of

full column rank of matrix M .

2 Problem statement

Consider the following uncertain system

ẋ(t) = Ax(t) + Bu(t) + f (t) + Φ(t)z(t), z(t) = Cx(t) (1)

where x(t) ∈ <n is state vector, u(t) ∈ <m is input vector, f (t) ∈ <n denotes the lumped matched

uncertain terms, z(t) ∈ <q is a middle-vector which represents the relation between the mismatched

uncertainties and system state vector. A, B, and C are known constant matrices with appropriate

dimensions. The following assumptions underlie this paper.

A1. Matrices B and C are of full rank with m > q.

A2. Matrix pair (A, B) is controllable, (A,C) is observable.

A3. There exists an unknown but bounded function F (t) ∈ <m such that f (t) = BF (t), where

‖F (t)‖ 6 k1 with a known scalar k1 > 0.

A4. Φ(t)z(t) represents the mismatched uncertainties, where Φ(t) ∈ <n×q is an unknown but

bounded function satisfying ‖Φ(t)‖ 6 k2 with a known scalar k2 > 0.

Define the sliding surface as[7]

s = B
T
X

−1
x = 0 (2)
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where s ∈ <m is the sliding surface function, X ∈ <n×n > 0 is a design parameter to be determined

later. The generality of (2) will be proved in the next section. Introduce a coordinates transformation
[

v

s

]

= Tx, with T =

[

B⊥T

BTX−1

]

. Then in new coordinates, the dynamic function of system (1)is

[

v̇

ṡ

]

=

[

A11 A12

A21 A22

] [

v

s

]

+

[

0

BTX−1B

]

(u(t) + F (t)) +

[

B⊥T

BTX−1

]

Φ(t)z(t) (3)

where A11 = B⊥TAXB⊥(B⊥TXB⊥)−1, A12 = B⊥TAB(BTX−1B)−1,

A21 = BTX−1AXB⊥(B⊥TXB⊥)−1, A22 = BTX−1AB(BTX−1B)−1. Note that

z(t) = C[XB
⊥(B⊥T

XB
⊥)−1

B(BT
X

−1
B)−1]

[

v

s

]

Then by s = 0, one can get the dynamic function of the sliding motion as

v̇ = B
⊥T

AXB
⊥(B⊥T

XB
⊥)−1

v + B
⊥T

Φ(t)CXB
⊥(B⊥T

X
−1

B
⊥)−1

v (4)

Since Φ(t) is unknown time-varying function and dissatisfies the matched condition, i.e., B⊥T
Φ(t) 6= 0,

the dynamics of sliding motion is usually influenced by it. In the previous reports[4,5,7], the robust con-

trol theory was utilized to design the corresponding sliding surface such that system (4) is asymptotically

stable. It is well-known that the robust design method will unavoidably induce some conservation in

the result. However, if the sliding surface (2) satisfies

CXB
⊥ = 0 (5)

then the dynamic function of sliding motion can be simplified as

v̇ = B
⊥T

AXB
⊥(B⊥T

XB
⊥)−1

v (6)

It is obvious that in case of (5), the dynamics of the closed-loop is immune to the mismatched uncertainty

Φ(t)z(t). Now the objectives can be formulated as:

1) design a sliding surface (2) satisfying equation (5) such that the system (6) is asymptotically

stable;

2) design a control law such that the sliding surface (2) can be reached in a finite time.

3 Main results

3.1 Sliding surface design

First we prove the generality of the sliding surface definition (2).

Lemma 1. Given any sliding surface Sx = 0 where S ∈ <m×n is a sliding matrix, there exists

a matrix X ∈ <n×n > 0 such that sliding motion on the sliding surface BTX−1x = 0 has the same

dynamics with that on the sliding surface Sx = 0.

Proof. Note that in sliding mode control matrix SB is non-singular[1], or else the equivalent

control will be not unique. From this, it is known that matrix multiplication

[

B⊥T

BT

]

[B⊥ ST] =
[

I B⊥TST

0 BTST

]

is non-singular. Further it follows that matrix [B⊥ ST] is non-singular. So the matrix

X > 0 can be chosen as X = (B⊥X1B
⊥T + STX2S)−1 with X1 ∈ <(n−m)×(n−m) > 0 and X2 ∈

<m×m > 0. Select N = BTSTX2 such that BTX−1 = NS. This completes the proof. �

Theorem 2. For system (1) with the assumptions (A1∼A4), the following propositions are

equivalent:

(P1) there exists a sliding surface such that the sliding motion is asymptotically stable and is

completely immune to the mismatched uncertainty.

(P2) the triple {A, B, C} satisfy the following conditions

rank(CB) = rank(C) (7)
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rank

[

λI − A B

C 0

]

= n + q, ∀Re(λ) > 0 (8)

(P3) there are symmetric matrices W1 ∈ <(n−q)×(n−q), W2 ∈ <m×m and scalar ε> 0 such that

the following LMIs hold

AC
⊥

W1C
⊥T + C

⊥
W1C

⊥T
A

T − εBB
T

> 0 (9)

C
⊥

W1C
⊥T + BW2B

T
> 0 (10)

Proof. By Lemma 1, (P1) implies that there exists X > 0 such that the second term of (4) is

zero and system (6) is asymptotically stable. Since Φ(t) is any time-varying function, it can be derived

that equation (5) holds. The equivalence between (P1) and (P3) can be proved alone the similar line

in [2] and hence omitted here. In the sequel, we only prove (P1)⇐⇒(P2).

(P1)=⇒(P2): It follows from (5) that there is a matrix M ∈ <q×m satisfying CX = MBT. So

matrix MBTCT = CXCT is of full rank. This implies the equation (7) holds.

On the other hand, since system (6) is asymptotically stable, there exists a Q0 > 0 such that

B
⊥T

AXB
⊥(B⊥T

XB
⊥)−1

Q0 + Q0(B
⊥T

XB
⊥)−1

B
⊥T

XA
T
B

⊥
< 0 (11)

Define a matrix Q > 0 as

Q = [XB
⊥(B⊥T

XB
⊥)−1

B]

[

Q0 0

0 I

] [

(B⊥TXB⊥)−1B⊥TX

BT

]

(12)

It can be verified that the inequality (11) is equivalent to B⊥T(AQ + QAT)B⊥ < 0. From Finsler

Lemma[8], it follows that

AQ + QA
T − εB

T
B < 0 (13)

where ε > 0. Assume that equation (8) is not true, i.e., there are a complex λ and a non-zero vector
[

v1

v2

]

such that Re(λ) > 0 and
[

λI − AT CT

BT 0

] [

v1

v2

]

= 0 (14)

which means that ATv1 = λv1 + CTv2 and BTv1 = 0. Thus, multiplying both sides of (13) by v∗
1 and

v1 respectively yields v∗AQv1 + v∗
1QATv1 − εv∗

1BBTv1 < 0. Note that QCT = BBTCT; then

(λ + λ
∗)v∗

1Qv1 < 0 (15)

Since v∗Qv1 > 0, it follows from (15) that Re(λ) > 0, which yields a contradiction. So equation (13)

must hold.

(P2)=⇒(P1): Without loss of generality, we assume that the input matrix has the form of B =
[

0

Im

]

. Partition matrix C as C = [C1 C2] with C2 ∈ <q×m. From (7), C2 is of full row rank. Define

matrices L1 = CT
1 (C2C

T
2 )−1C2 and L2 =

[

C⊥T
2

C2

]

. Also partition matrix A as A =

[

A11 A12

A21 A22

]

with

A11 ∈ <(n−m)×n−m . Then a simple manipulation yields

[

λIn − AT CT

BT 0

]

∼







λIn−m − AT
11 −AT

21 CT
1

−AT
12 λIm − AT

22 CT
2

0 Im 0







∼

[

λIn−m − AT
11 CT

1

−AT
12 CT

2

]

∼

[

λIn−m − AT
11 + L1A

T
12 0

−AT
12 CT

2

]

(16)

∼







λIn−m − AT
11 + L1A

T
12 0

C⊥T
2 AT

12 0

C2A
T
12 C2C

T
2






∼

[

λIn−m − AT
11 + L1A

T
12

C⊥T
2 AT

12

]
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By the condition (8), (16) means that the matrix pair (AT
11 − L1A

T
12, C

⊥T
2 AT

12) is detectable. So

there exist X1 ∈ <(n−m)×(n−m) > 0 and K ∈ <(n−m)×(m−q) such that

(A11 − A12L
T
1 − A12C

⊥

2 K
T)X1 + X1(A

T
11 − L1A

T
12 − KC

⊥T
2 A

T
12) < 0 (17)

The symmetric positive definite matrix X of sliding surface definition (2) is chosen as

X =

[

X1 X1(−L1 − KC⊥T
2 )

(−LT
1 − C⊥

2 KT)X1 X2 + (−LT
1 − C⊥

2 KT)X1(−L1 − KC⊥T
2 )

]

(18)

where X2 ∈ <m×m > 0. Without loss of generality, set B⊥T = [In−m 0]. Then it can be easily

testified that equation (5) holds. By substituting (18) into system (6), one obtains

v̇ = (A11 − A12L
T
1 − A12C

⊥

2 K
T)v (19)

Form (17), it follows that system (19) is asymptotically stable. This completes the proof. �

3.2 Synthesis of control law

Theorem 3. The sliding surface (2) of system (1) comes from LMIs (9) and (10). Then under

the following control law

u = (BT
X

−1
B)−1

(

B
T
X

−1
Ax + k1‖B

T
X

−1‖‖CBW2‖s + (k2‖B
T
X

−1
B‖ + η)

s

‖s‖

)

(20)

the trajectories of the system can in a finite time enter into and subsequently remain on the sliding

surface, where η is a positive scalar to adjust the convergent rate.

Proof. The derivative of sliding surface respect to time is

ṡ = B
T
X

−1
Ax + B

T
X

−1
Bu + B

T
X

−1
BF (t) + B

T
X

−1
Φ(t)Cx (21)

Note that

Φ(t)Cx = Φ(t)CXX
−1

x = Φ(t)CBW2s (22)

Substituting the control law (20) into (21) yields sTṡ 6 −η‖s‖, which implies that the system will in

a finite time enter into and then remain on the sliding surface. This completes the proof. �

Remark. It can be found from (22) that the mismatched uncertainty Φ(t)z(t) does not bring the

chattering for the system. If system (1) only owns the uncertain term Φ(t)z(t) and if the condition that

the sliding surface is reached in a finite time is approximately replaced by one that the reaching rate

of sliding surface is larger than the convergent rate of sliding motion, then the control law (20) can be

replaced by

u = −(BT
X

−1
B)−1(BT

X
−1

Ax + (k1‖B
T
X

−1‖‖CBW2‖ + µ)s) (23)

In that case, one has sTṡ 6 −µ‖s‖2, which implies the decay rate of the sliding surface is larger than

e−µt. It is obvious that control law (23) is a continuous function and does not result in any chattering

problem.

4 Numerical example

Consider the following uncertain system




ẋ1

ẋ2

ẋ3



=





sin x2 1 0

sin x3 0 1

2 + sin x1 3 4









x1

x2

x3



+





1 0

0 1

1 0





[

u1

u2

]

(24)

The initial state is assumed to be x0 = [10,−10, 10]T. By Theorem 2, one can get

W1 =

[

38.8056 −20.0158

−20.0158 5.9298

]

, W2 =

[

57.2142 7.3831

7.3831 121.6529

]

and the sliding surface is

s = 0.01 ×

[

2.2397 −0.1404 −0.4737

−3.8116 1.0876 3.6712

]

x (25)
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Chose k1 = 2 and k2 = 0. Note that system (24) only owns mismatched uncertain term, two control

laws (20) and (23) are used here for comparing. Set η = 0.1, and the control law (20) is

u = −

[

57.214 7.383

7.383 92.896

] ( [

−0.009 0.008 −0.020

0.073 0.072 0.158

]





x1

x2

x3



 + 6.638s + 0.1
s

‖s‖

)

(26)

Set µ = 100, and the control (23) is

u = −

[

57.214 7.383

7.383 92.896

] ( [

−0.009 0.008 −0.020

0.073 0.072 0.158

]





x1

x2

x3



 + 6.638s + 100s

)

(27)

The simulation results are shown in Fig. 1 which demonstrates the efficacy of the proposed method.

(a) (b)

Fig. 1 The histories of system states (a) and control laws (b). (-) solid line: the trajectories under the control

law (26); (:) dotted line: the trajectories under the control law (27)
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