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Abstract An adaptive image watermarking algorithm based on HMM in wavelet domain is pro-

posed. The algorithm is abstracted as follows: 1) the vector HMM model is employed to describe
the statistical characteristic of image wavelet coefficients and the resulting HMM based detector

achieves significant improvements in performance compared to the conventional correlation detector;
2) adaptive watermark embedding based on HVS analysis; 3) a novel embedding strategy which is

optimized for the HMM tree structure is adopted; 4) the strategy of dynamical threshold is applied

in watermark detection. High robust results are achieved against Stirmark attacks, such as JPEG
compression, adding noise, median cut and filter.
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1 Introduction

With the popularity of internet, the copyright protection of digital media is becoming increasingly

important. And thus digital watermarking, especially for image and video, has become the domain of

extensive research. Digital watermarking is to embed specific data into original signal. The challenge is

that the watermark should be robust against various attacks under the condition of invisibility. Com-

pared with the spacial domain approach, watermarking in transform domain (DCT and wavelet based)

can trade off the robustness and visibility, and thus becomes the mainstream in digital watermarking.

From the perspective of digital communication, the wavelet based watermarking can be described

as a process of transmission of narrow-band spread spectrum signal over wide-band channel and blind

watermark detection is equivalent to the detection of weak signal from strong noise background. Con-

sequently performance of the detector heavily depends on the model of the “channel”, i.e., the accuracy

of the statistical model for the wavelet coefficients is vital to performance improvement of the detector.

Most of the existing model based wavelet watermarking algorithms are based on the following two

assumptions for wavelet coefficients distribution: 1) Gaussian distribution[1] (the correlation detector

used in current wavelet based watermarking algorithm implies the gaussian distribution); 2) Generalized

gaussian distribution but independent among wavelet coefficients[2,3]. Unfortunately, the first assump-

tion has deviation from the true distribution of wavelet coefficients, while the second one ignores the

dependence among wavelet coefficients. In this paper we propose a robust image watermarking algo-

rithm based on the vector hidden Markov model in wavelet domain (WD-VHMM), which takes into

account both the energy correlation across the scale and the different sub-band at the same scale of

the wavelet pyramid. By incorporating other key technologies such as HVS, optimal embedding struc-

ture for HMM tree and dynamical threshold scheme, the proposed WD-VHMM based watermarking

algorithm achieves high robustness against Stirmark attacks, such as JPEG compression, median and

filtering.

The remainder of this paper is organized as follows. Sections 2 and 3 introduce briefly the hidden

Markov model in wavelet domain and the HVS based adaptive watermark embedding scheme, respec-

tively. Section 4 and 5 give the optimal embedding scheme and the blind detection for the vector tree

structure. Simulation results and analysis are included in Section 6. Finally, we draw the conclusion in

Section 7.
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2 HMM in wavelet domain

Crouse et al.[4] points out that, besides its primary properties such as locality, multi-resolution

and energy compaction, the wavelet transform has the following two attractive secondary properties:

1) Non-Gaussianity: The wavelet coefficients have peaky, heavy-tailed marginal distributions;

2) Persistency: Large/small values of wavelet coefficients tend to propagate through the scales of

the quad-trees.

Taking full advantages of the above properties of wavelet transform, Crouse[4,5] proposed the

hidden Markov model in wavelet domain, which can well describe the distribution of wavelet coefficients.

In WD-HMM model, each wavelet coefficient wj,k(1 6 j 6 J , j = 1 represents the coarsest scale)

has its hidden state Sj,k. If there is M hidden states, then P (Sj,k = m) = p
(m)
j,k ; m = 1, · · · , M . Given

Sj,k = m, wj,k is modeled with a zero-mean Gaussian g(0, σ
(m)
j,k ). Without loss of generality, we assume

M = 2 in this paper, and the probability density function (PDF) of wj,k is given by the two-state

zero-mean Gaussian mixture model as follows.

fj(w) = p1
jg(w;σ

(1)
j ) + p2

jg(w;σ
(2)
j ) (1)

where p
(1)
j + p

(2)
j = 1, and g(w;σ) = 1√

2πσ2
exp

(

− w2

2σ2

)

. p
(1)
j , p

(2)
j in (1) represent the probability

that wj,k is small or large (in a statistical sense), respectively.

WD-HMM captures the energy dependency across scale by using Markov chain to describe the

probability of hidden state transition from the parent node to its four child nodes, i.e.,

Aj =

(

p1→1
j p1→2

j

p2→1
j p2→2

j

)

, j = 2, 3, · · · , J (2)

where pm′
→m

j represents the probability that child node is in state m given that its parent node is in

state m′. The state probability of child node can be determined by that of its parent node and the

transition matrix, i.e.,

p
(m)
j =

∑

m′

p
(m′)
j−1 pm′

→m
j , j = 2, 3, · · · , J (3)

If pj = (p
(1)
j p

(2)
j ) and pj = pj−1Aj , then

pj = p1A2A3 · · ·Aj , j = 2, 3, · · · , J (4)

Therefore, the WD-HMM for a tree of wavelet coefficients is completely defined by a set of parameters:

θ = {p1, A2, · · · , AJ ; σ
(m)
j , (j = 1, · · · , J, m = 1, 2)} (5)

The WD-HMM model can efficiently describe the non-Gaussian behaviors of wavelet coefficients and

captures the statistical dependency of wavelet coefficients across scale. Moreover, the efficient EM

algorithm exists for fitting a WD-HMM to the observed signal using the ML criterion[4].

The above WD-HMM model is based on the assumption that wavelet coefficients at different

orientations are independent, which ignores the existing cross-correlation among sub-band coefficients

from different orientations at the same scale. To enhance the capability of WD-HMM in capturing

cross-orientation dependency of wavelet coefficient, the vector WD-HMM is adopted in this paper, in

which the coefficients at the same location and scale are grouped into a vector (see Fig. 1(b)). Denote

the wavelet coefficients at orientation as d (d = 1, 2, 3 for H,V, D, respectively), the grouping operation

produces vectors of coefficients: wj,k = (w
(1)
j,kw

(2)
j,kw

(3)
j,k)T. For vector WD-HMM model, we have

fj(w) = p
(1)
j g(w, C

(1)
j ) + p

(2)
j g(w, C

(2)
j ) (6)

where g(w; C) denotes the zero-mean multivariate Gaussian density with covariance matrix C , i.e.,

g(w; C) =
1

√

(2π)n|det(C)|
exp(−w

T
C

−1
w) (7)

where n is the number of orientations (in this case n = 3).
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The wavelet coefficient vectors in vector WD-HMM have the similar quad-tree structure as that

in scalar WD-HMM. Thus an image is modeled by one vector WD-HMM with a set of parameters:

θ = {p1, A2, · · · , AJ ; C
(m)
j , (j = 1, · · · , J, m = 1, 2)} (8)

As the proposed vector WD-HMM model captures both the statistical dependencies of wavelet

coefficients across the scale and cross-correlation among subband coefficients at the same scale, it can

be expected that the vector model can more accurately describe the statistical behavior of wavelet

coefficients.

Fig. 1 Hidden Markov model in WT (two levels)

3 Human visual system

The human visual system (HVS) plays an important role in digital image processing. It is reported

that [6] there are three key masking effects in HVS, i.e., frequency masking, luminance masking and

texture masking. The invisible watermarking asks for two contradictory objectives, i.e., robustness and

invisibility. Increasing the strength of watermark signal helps to improve the robustness performance,

which in turn would decrease the objective of invisibility.

Following Watson′s idea[6], we propose an adaptive watermark embedding strategy incorporating

the HVS property. The visual masking weights in wavelet domain are generated based on the HVS

analysis for image wavelet coefficients, which are used to control the watermark strength adaptively.

Here, three HVS masking features are employed:

1) HVS is less sensitive to noises in middle and high frequency subbands of the wavelet pyramid,

so we have the frequency m();

2) HVS has different sensitivity to noise in areas with different background luminance. HVS is

almost insensitive to the noise in areas with darker or brighter background luminance, which can be

described by the function luminance m();

3) HVS is less sensitive to noise in areas with highly textured patterns, and we have the texture m().

Applying Lewis’s result in [7], the perceptual threshold JND is given as follows:

JND(j, o, x, y) = frequence m(j, o)∗luminance m(j, x, y)∗texture m(j, x, y)0.034 (9)

where the definition of the three masking functions in (9) can be found in [6].

4 Watermark embedding

4.1 Watermark embedding based on HMM

Under the framework of vector WD-HMM, the carrier for watermark signal can be depicted by

the vector tree shown in Fig. 1(b). In the interest of resisting against JPEG attack, the watermark is

embedded only to the coarsest 2 wavelet scales. Therefore each vector tree w(t) which is used to embed

watermark includes only 15 nodes, where w(t, i) denotes the ith coefficient of the tth tree.

The process of watermark embedding can be described as follows:

1) The determination of embedding strength α(t, i) based on HVS;

2) The watermark W is chosen to be a PN sequence s[n] of length T , where s[n] = {−1, 1};
3) Under the control of secret key k, T vector trees are stochastically chosen within the wavelet

domain, where each tree corresponds to 1 bit of the PN sequence. The wavelet coefficients are modified

as follows:

w′(t, i) = w(t, i) + β · s[t] · a(t, i), i = 1, · · · , 15 (10)

where β is the global adjustment factor of embedding strength.
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4.2 Optimal embedding

The construction of WD-HMM helps the reliable detection of watermark signal by making use

of the difference between the statistical model of image wavelet coefficients (WD-HMM) and that of

watermark signal. Therefore the “good” watermark detection strategy is to keep the distance between

the models as large as possible under the condition of invisibility.

The embedding rule of (10) makes the child nodes either large or small when one vector tree

is modified, and the “distance” between watermark and vector WD-HMM is relatively small. In the

interest of reliable detection of watermark, an optimal embedding strategy for the WD-HMM tree

structure is developed, which makes half of the child nodes large and others small. Fig. 2(b) shows the

optimal embedding structure and (11) gives the optimum embedding rule:
{

w′(t, i) = w(t, i) + β · · · s[t] · a(t, i), i ∈ 1 part

w′(t, i) = w(t, i) − β · s[t] · a(t, i), i ∈ 2 part
(11)

Simulation results demonstrate that although there is some minor loss in PSNR performance of

the watermarked image, the performance against Stirmark attack is significantly improved after the

above optimal embedding strategy is applied.

Fig. 2 The strategy for watermark embedding

5 Watermark detection

5.1 Watermark detection based on WD-HMM

Suppose that the image wavelet coefficient x is modeled by a joint probability density function as

follows.

fx(x) =
T

∏

t=1

f(T t
x|θ) (12)

where θ is the set of HMM parameters and T
t
x denotes the tth tree. For an observed image z, the

watermark detection can be formulated as the following hypothesis test:

H0 : z = x + w
∗ and w

∗ 6= w; H1 : z = x + w (13)

where w is the embedded watermark signal.

5.1.1 The description for the statistics

Given the statistical model fx(x) of original image, the optimal detection can be derived from

Neyman-Pearson Theorem [8]:

Λ(z) = ln(fx(z − w)/fx(z)) (14)

where Λ(z) is the likelihood function. For given threshold η, we have: H1 : Λ(z) > η; and H0 : Λ(z) <

η. Incorporating the vector HMM model and vector tree, we have

Λ(z) = ln(z − w)/fx(z) =

T
∑

t=1

(lnf((T t
z − β · s[t] · αt)|θ) − lnf(T t

z|θ)) (15)

where T represents the length of watermark sequence.

5.1.2 The distribution of Λ(z) in case of H0

When H0 is true, there is no target watermark signal w in original image x. And the observed

image z = x + w
∗, w

∗ 6= w. Denoting H0 = Λ(z) in case of H0, we have

H0 =Λ(z) =

T
∑

t=1

(lnf((T t
x + β · s∗[t] · αt − β · s[t] · αt)|θ) − lnf(T x|θ)) =
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T
∑

t=1

(lnf((T t
x + β · (s∗[t] − s[t]) · αt)|θ) − lnf(T t

x|θ)) (16)

Considering that s[t] and s∗[t] in (16) are PN sequences and take the value 1 or −1 with equal probability,

we further obtain

p(s∗[t] − s[t]) =











0.25, s∗[t] − s[t] = 2

0.5, s∗[t] − s[t] = 0

0.25, s∗[t] − s[t] = −2

(17)

Formula (16) can be viewed as the sum of T independent statistics. By applying central limit

theorem, we can derive that the PDF of the statistic H0 is approximately Gaussian with variance σ2
0

and mean m0, respectively, where

m0 =

T
∑

t=1

(

1

4
lnf((T t

x − 2βαt)|θ) +
1

4
lnf((T t

x + 2βαt)|θ) −
1

2
lnf(T t

x|θ)
)

(18)

σ2
0 =

1

8

T
∑

t=1

{(lnf((T t
x + 2βαt)|θ) − (lnf(T t

x|θ)))2 + (lnf((T t
x − 2βαt)|θ) − (lnf(T t

x|θ)))2}+

1

16

T
∑

t=1

(lnf((T t
x + 2βαt)|θ) − (lnf((T t

x − 2βαt)|θ)))2 (19)

5.1.3 The distribution of Λ(z) in case of H1

When H1 is true, the observed image z = x + w, and T
t
z = T

t
x + β · s[t] · αt. Also we denote

H1 = Λ(z) in case of H1 and we have

H1 = Λ(z) =
T

∑

t=1

(lnf(T t
x|θ) − lnf((T t

x + β · s[t] · αt)|θ)) (20)

Similarly, formula (20) can also be viewed as the sum of T independent statistics. Consequently statistic

H1 is also approximately Gaussian with variance σ2
1 and mean m1, respectively, where

m1 =

T
∑

t=1

(

lnf(T t
x|θ) −

1

2
lnf((T t

x − βαt)|θ) −
1

2
lnf((T t

x + βαt)|θ)
)

(21)

σ2
1 =

1

4

T
∑

t=1

(lnf((T t
x − βαt)|θ) − lnf((T t

x + βαt)|θ))2 (22)

5.2 The correlation detection

The use of correlation detector for watermark signal implies the assumption that the wavelet

coefficients are Gaussian. In the interests of fair performance comparison with HMM based detector,

we use the similar vector tree structure for watermark embedding. Given the observed image z and

hypothesis H0 and H1, the statistic can be formulated as the correlation function

Λ(z) = ρ =
1

T · I

T
∑

t=1

l
∑

i=1

z(t, i) · s[t] (23)

where T and I denote the numbers of vector trees and nodes within each tree, respectively. With the

similar approach as in section 5.1, we can derive that the PDF of Λ(z) conditioned to the hypothesis

H0 and H1 are approximately Gaussian with variance σ2
0 , σ2

1 and means m0 and m1, respectively,

where

m0 = 0, σ2
0 =

1

T 2 · I2

T
∑

t=1

I
∑

i=1

(x2(t, i) + β2 · α2(t, i)) (24)

m1 =
1

T · I

T
∑

t=1

I
∑

i=1

β · α(t, i), σ2
1 =

1

T 2 · I2

T
∑

t=1

I
∑

i=1

x2(t, i) (25)
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5.3 The performance criteria for watermark detection

For given threshold η, the probabilities of false alarm and detection are expressed as follows,

respectively.

PF = Q

(

η − m0

σ0

)

, PD = Q

(

η − m1

σ1

)

(26)

where Q(α) =
∫

∞

α
1√
2π

e−y2/2dy.

For design of a good detector, we expect to increase the PD while keeping the PF small. Actually,

PD and PF are two contradictory criteria for any detector. In general, we use ROC, i.e., the receiver

operating characteristic, to evaluate the performance of the detector:

PD = Q((σ0 · Q−1(PF ) + m0 − m1)/σ1) (27)

Given the target false alarm probability PF , the detection threshold for the resulting HMM detector

is[1]:

η = σ0 · Q−1(PF ) + m0 (28)

6 Simulation results and analysis

In our simulation, we tested a variety of 512 × 512 × 8b standard images with different texture

characteristics, including Lena, Baboon, Fishingboat and Peppers. Fig. 3 shows the original and wa-

termarked image Lena. To demonstrate the effectiveness of the proposed watermarking algorithm, we

compare the performance of our HMM based detector versus the conventional correlation detector un-

der StirMark attacks. In the interest of fair performance comparison, the same vector tree structure

and watermark signal are used for both detectors.

Fig. 3 (a) Original image of Lena (b) Watermarked image of Lena

Generally speaking, the increasing strength of attack on watermarked image leads to the smaller

H1. And consequently it increases the probability of miss detection if the threshold η is determined

from the un-attacked image. Fig. 4 shows the behavior of H0 and H1 when JPEG25 attack is taken on

Lena image. It is observed that, although it is impossible to detect the watermark with the original

threshold (solid line) η, there still exists enough space between H0 and H1 (dot line) to identify the

watermark if a dynamical threshold is taken. We also found in our simulation that the statistic H0 is

approximately Gaussian under almost all attacks. Fig. 5 shows the distributions of H0 under different

JPEG attacks. To determine the dynamical threshold for the attacked image, we generate a large sample

of PN sequence (say 1000 in our simulation) and compute the value of H0 for every PN sequence to

obtain the m0 and σ2
0 . For the given PF = 10−8, the dynamical threshold is determined with (28).

The simulation for other attacks under Stirmark 4.1 are taken to test the robustness of the pro-

posed HMM based watermarking algorithm, which include JPEG compression, noise Gaussian filtering,

sharpening and median cut. The results are summarized in Table 1∼4.

It can be found from our simulation results that the vector HMM based detector with dynamical

threshold has significant improvement in performance with respect to scalar HMM based and correlation

detectors. Furthermore, incorporating the optimal embedding strategy leads to further improvement

in performance for the vector HMM based detector.
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Fig. 4 The behavior of H0 and H1 under JPEG25 attack

Fig. 5 (a) The distribution of H0 under JPEG70 for Lena (b) The distribution of H0 under JPEG40 for Lena

Table 1 Performance of vector HMM detector (conventional embedding)

image Lena baboon f16 Fishingboat Peppers

PSNR of watermarked image 44.56dB 44.36dB 42.98dB 44.48dB 44.34dB

Best performance of JPEG attack JPEG19 JPEG7 JPEG15 JPEG13 JPEG14

Best performance of noise attack 9 11 15 12 9

Best performance of median cut 7 × 7 7 × 7 7 × 7 7 × 7 7 × 7

Gaussian filter Ok Ok Ok Ok Ok

Sharpening Ok Ok Ok Ok Ok

Table 2 Performance of vector HMM detector (optimal embedding)

image Lena baboon f16 Fishingboat Peppers

PSNR of watermarked image 44.59dB 44.36dB 42.95dB 44.49dB 44.33dB

Best performance of JPEG attack JPEG8 JPEG6 JPEG10 JPEG10 JPEG9

Best performance of noise attack 9 11 12 10 12

Best performance of median cut 11 × 11 9 × 9 11 × 11 11 × 11 11 × 11

Gaussian filter Ok Ok Ok Ok Ok

Sharpening Ok Ok Ok Ok Ok

Table 3 Performance of correlation detector

image Lena baboon f16 Fishingboat Peppers

PSNR of watermarked image 44.59dB 44.36dB 42.95dB 44.49dB 44.33dB

Best performance of JPEG attack JPEG42 JPEG28 JPEG23 JPEG40 JPEG43

Best performance of noise attack 6 2 12 5 3

Best performance of median cut 3 × 3 Fail 5 × 5 Fail Fail

Gaussian filter Ok Fail Ok Ok Fail

Sharpening Ok Ok Ok Ok Ok
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Table 4 Performance of scalar HMM detector

image Lena baboon f16 Fishingboat Peppers

PSNR of watermarked image 44.59dB 44.36dB 42.95dB 44.49dB 44.33dB

Best performance of JPEG attack JPEG13 JPEG12 JPEG13 JPEG21 JPEG15

Best performance of noise attack 3 2 3 3 2

Best performance of median cut 11 × 11 5 × 5 11 × 11 7 × 7 9 × 9

Gaussian filter Ok Ok Ok Ok Ok

Sharpening Ok Ok Ok Ok Ok

7 Conclusion and the future work

In this paper, we present an adaptive image watermarking algorithm based on the HMM in wavelet

domain. The proposed algorithm employs a vector HMM model, which takes into account both the

energy correlation across the scale and the different subbands at the same scale of the wavelet pyramid.

A novel embedding strategy which is optimized for the HMM tree structure and dynamical threshold

scheme are used to further improve the performance. Simulation results show that, compared with

conventional correlation detector, our HMM based watermarking algorithm has significant improvement

in performance against StirMark attacks, such as JPEG compression, additive noise, median cut and

filter.

The objective of the paper is to set up the theoretical framework for HMM based image water-

marking and verify its feasibility. Although only the result for 1 bit watermarking is given in the paper,

the algorithm can certainly be extended to the cases of multi-bit image and video watermarking, which

are the work for further research.
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