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Abstract This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for non-

linear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be

used to establish the model for certain unknown complex system. The main advantage of using FHM

over Takagi-Sugeno (T-S ) fuzzy model is that no premise structure identification is needed and no

completeness design of premise variables space is needed. In addition, an FHM is not only a kind

of valid global description but also a kind of nonlinear model in nature. A nonlinear quadratic cost

function is developed as a performance measurement of the closed-loop fuzzy system based on FHM.

Based on delay-independent Lyapunov functional approach, some sufficient conditions for the exis-

tence of such a fuzzy hyperbolic guaranteed cost controller via state feedback are provided. These

conditions are given in terms of the feasibility of linear matrix inequalities (LMIs). A simulation

example is provided to illustrate the design procedure of the proposed method.

Key words Fuzzy hyperbolic, guaranteed cost control, linear matrix inequalities, time delays,

nonlinear system

1 Introduction

Recently, the problem of designing guaranteed cost controllers for uncertain time-delay systems

has attracted a number of researchers′ attention[1,2]. The guaranteed cost controller is constructed in

such a way that it quadratically stabilizes the uncertain system and also guarantees an upper bound

on a given quadratic cost function. Stability criteria for time-delay systems can be classified into two

categories. One is delay-dependent criteria, which depend on the size of time delays, the other is delay-

independent criterion, which are irrespective of size of time delays (i.e., the time delays are allowed to

be arbitrarily large). The delay-independent criteria is considered more conservative in general than the

delay-dependent ones, especially when the size of delays is actually small. However, delay-independent

criteria are more feasible than delay-dependent ones when the size of time delays is uncertain, unknown

or very large[3]. A number of stability analysis and controller systhesis results based on linear matrix

inequalities (LMIs) have appeared in the literature where the T-S fuzzy model is used. The stability

of the overall fuzzy system is determined by checking a set of LMIs. It is required that a common

positive definite matrix P be found to satisfy the set of LMIs. However, this is a difficult problem to

solve since such a matrix might not exist in many cases, especially for a lot of fuzzy rules needed to

approximate highly nonlinear complex systems. In order to overcome the difficulty, this paper studies

delay-independent fuzzy hyperbolic guaranteed cost control for a class of nonlinear continuous-time

systems with parameter uncertainties.

Recently, a new continuous-time fuzzy model, called the fuzzy hyperbolic model (FHM), has been

proposed in [4], [5], and [6]. As same as the T-S fuzzy model, FHM can be used to establish the model for

a certain unknown complex system. Besides the advantage that the FHM is a global model, comparing

it with T-S model, we know that no premise structure identification is needed and no completeness
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design of premise variables space is needed when an FHM is used. Thus, nonlinear system FHM can

obtain the best representation using FHM. Also FHM can be seen as a neural network model, so we

can learn the model parameter by back-propagation (BP) algorithm. In this paper, first, an FHM is

used to represent the system. Secondly, delay-independent fuzzy guaranteed cost controller via state

feedback design based on FHM, called delay-independent fuzzy hyperbolic guaranteed cost controller

(DI-FHGCC), is addressed. Thirdly, the DI-FHGCC design problem is converted into a feasible problem

of linear matrix inequality (LMI), which makes the prescribed attenuation level as small as possible,

subject to some LMI constraints. The LMI feasible problem can be efficiently solved by the convex

optimization techniques with global convergence, such as the interior point algorithm[7].

2 Preliminaries

In this section we review some necessary preliminaries for the FHM.

Definition 1[4,5]. Given a plant with n input variables x = (x1(t), · · · , xn(t))T and n output

variables ẋ = (ẋ1(t), · · · , ẋn(t))T. If each output variable corresponds to a group of fuzzy rules which

satisfies the following three conditions:

1) For each output variable ẋl, l = 1, 2, · · · , n, the corresponding group of fuzzy rules has the

following form:

Rj : IF x1 is Fx1
and x2 is Fx2

, · · ·, and xn is Fxn , THEN ẋl = ±cFx1
± cFx2

± · · · ± cFxn
,

j = 1, · · · , 2n, where Fxi
(i = 1, ·, n) are fuzzy sets of xi, which include Pxi

(positive) and Nxi
(negative),

and c±Fxi
(i = 1, · · · , n) are 2n real constants corresponding to Fxi

;

2) The constant terms c±Fxi
in the THEN-part correspond to Fxi

in the IF-part. That is, if the

linguisitc value of Fxi
term in the IF-part is Pxi

, c+
Fxi

must appear in the THEN-part; if the linguistic

value of Fxi
term in the IF-part is Nxi

, c−Fxi
must appear in the THEN-part; if there is no Fxi

in the

IF-part, c±Fxi
does not appear in the THEN-part.

3) There are 2n fuzzy rules in each rule base; that is, there are a total of 2n input variable

combinations of all the possible Pxi
and Nxi

in the IF-part; then we call this group of fuzzy rules

“hyperbolic type fuzzy rule base (HFRB)”. To describe a plant with n output variables, we will need

n HFRBs.

Lemma 1[4,5]. Given n HFRBs, if we define the membership function of Pxi
and Nxi

as:

µPxi
(xi) = e−

1

2
(xi−ki)

2

, µNxi
(xi) = e−

1

2
(xi+ki)

2

(1)

where i = 1, · · · , n and ki are positive constants. Denoting c+
Fxi

by cPxi
and c−Fxi

by cNxi
, we can derive

the following model:

ẋl = f(x) =

nl
∑

i=1

cPxi
ekixi + cNxi

e−kixi

ekixi + e−kixi
=

nl
∑

i=1

pi+

nl
∑

i=1

qi
ekixi − e−kixi

ekixi + e−kixi
=

nl
∑

i=1

pi+

nl
∑

i=1

qitanh(ki, xi) (2)

where pi = (cPxi
+ cNxi

)/2 and qi = (cPxi
− cNxi

)/2. Therefore, the whole system has the following

form:

ẋ = P + Atanh(kx) (3)

where P is a constant vector, A is a constant matrix, and tanh(kx) is defined by

tanh(kx) = [tanh(k1x1) tanh(k2, x2) · · · tanh(knxn)]T

We will call (3) a fuzzy hyperbolic model (FHM).

From Definition 1, if we set cPxi
and cNxi

negative to each other, we can obtain a homogeneous

FHM:

ẋ = Atanh(kx) (4)

Since the difference between (3) and (4) is only the constant vector term in (3), there is essentially

no difference between the control of (3) and (4). In this paper, we will design a fuzzy H∞ guaranteed

cost controller based on FHM described in (4).
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3 Fuzzy hyperbolic guaranteed cost control design via State-feedback

The FHM for the nonlinear time-delay systems with parameter uncertainty is proposed as the

following form:

ẋ(t) = (A + ∆A)tanh(kx) + (Ad + ∆Ad)tanh(kx(t − h(t))) + (B + ∆B)u(t), t > 0
(5)

x(t) = ϕ(t), t ∈ [−hmax, 0]

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn×1 denotes the state vector; A ∈ Rn×n and B ∈ Rn×p are

system matrices and input matrix, respectively; ∆A, ∆Ad and ∆B denote parameter uncertainties;

the real valued functional h(t) is the bounded time delay and satisfies 0 6 ḣ(t) 6 β < 1 and β is a

known constant. The initial condition ϕ(t) is given by initial vector function that is continuous for

−hmax 6 t 6 0.

We assume that [∆A ∆Ad ∆B] = MF (t)[N1 N2 N3], where M, N1, N2 and N3 are known

real constant matrices of appropriate dimension, and F (t) is an unknown matrix function and satisfies

FT(t)F (t) 6 I .

Definition 2. Consider system (5) with the following cost function

J =

∫

∞

0

[tanh
T(kx)Qtanh(kx) + u

T(t)Ru(t)]dt (6)

and

u(t) = Ktanh(kx(t)) (7)

where Q and R are symmetric, positive-definite matrices; K is the feedback gain. The controller is

called fuzzy hyperbolic guaranteed cost controller (FHGCC) if there exist a fuzzy hyperbolic control

u(t) as in (7) and a scalar J0 such that the closed-loop system is asymptotically stable and the closed-

loop value of the cost function (6) satisfies J 6 J0. J0 is said to be a guaranteed cost and control law

u(t) is said to be a fuzzy hyperbolic guaranteed cost control law for system (5).

With the control law (7) the overall closed-loop system can be written as:

ẋ = (A + ∆A + (B + ∆B)K)tanh(kx) + (Ad + ∆Ad)tanh(kx(t − h(t)))
(8)

x(t) = ϕ(t), t ∈ [−hmax, 0]

Lemma 2[7]. Given matrices M , E and F of appropriate dimensions satisfying FTF 6 I . For

any ε > 0, the following result holds

MFE + ETFTMT 6 εMMT +
1

ε
ETE

Then, we get the following result.

Theorem 1. For the nonlinear system (5) and associated cost function (6), if there exist a positive

scalar ε > 0, a positive definite diagonal matrix X = diag{x̄1, x̄2, · · · , x̄n} ∈ Rn×n > 0 and a positive

definite matrix S ∈ Rn×n > 0 such that the matrix inequality

















Θ + εMMT ∗ ∗ ∗ ∗ ∗

SAT
d −S ∗ ∗ ∗ ∗

N1X + N3F N2S −εI ∗ ∗ ∗

X 0 0 −(1 − β)S ∗ ∗

X 0 0 0 −Q−1 ∗

F 0 0 0 0 −R−1

















< 0 (9)

holds, then, the control law, u(t) = Ktanh(kx(t)) is a fuzzy hyperbolic guaranteed cost control law

and

J0 = 2
n

∑

i=1

pi

ki

ln(coshkixi(0)) +
1

1 − β

∫ 0

−h(0)

tanh
T(kx(s))S−1

tanh(kx(s))ds
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where Θ = AX + XAT + BF + FTBT, K = FX−1, pi = x̄−1
i , and ∗ denotes the entries induced by

symmtry.

Proof. Choose the following Lyapunov function candidate for system (8)

V (t) = 2
n

∑

i=1

pi

ki

ln(coshkixi) +
1

1 − β

∫ t

t−h(t)

tanh
T(kx(s))Htanh(kx(s))ds (10)

where xi is the ith element of x, and ki is the ith diagonal element of k; H is a positive-definite matrix.

Here, ki > 0, pi > 0. Because cosh(kixi) = ekixi + e−kixi/2 > (ekixi)
1

2 = 1 and ki > 0, pi > 0, we

know V (t) > 0 for all x and V (t) → ∞ as ‖x‖2 → ∞.

Along the trajectories of system (8), the time derivative of V (t) is given by

V̇ =2
n

∑

i=1

pitanh(kx)ẋ + αtanh
T(kx)Htanh(kx) − α(1 − ḣ(t))tanh

T(kxh)Htanh(kxh) =

2tanh
T(kx)P ẋ + αtanh

T(kx)Htanh(kx) − α(1 − ḣ(t))tanh
T(kxh)Htanh(kxh) 6

[

tanh(kx)

tanh(kxh)

]T [

PĀ + ĀTP + αH PĀd

ĀT
d P −H

] [

tanh(kx)

tanh(kxh)

]

+ tanh
T(kx)Qtanh(kx)+

u
T(t)Ru(t) − tanh

T(kx)Qtanh(kx) − u
T(t)Ru(t) =

ξT
Θξ − tanh

T(kx)Qtanh(kx) − u
TRu(t) (11)

where

ξ = [tanh
T(kx) tanh

T(kxh)]T, k = diag(k1, k2, · · · , kn), P = diag(p1, p2, · · · , pn) ∈ Rn×n

Ā = (A + ∆A) + (B + ∆B)K, Ād = Ad + ∆Ad, α =
1

1 − β

x(t − h(t)) , xh, Θ =

[

PĀ + ĀTP + αH + Q + KTRK PĀd

ĀT
d P −H

]

Let Θ < 0. Then V̇ 6 −tanhT(kx)Qtanh(kx) − uTRu(t) 6 −λm(Q)‖tanh(kx)‖2 < 0. Thus,

the closed-loop system is asymptotically stable. Furthermore, integrating V̇ 6 −tanhT(kx)Qtanh(kx)−

uT(t)Ru(t) from time 0 to tf yields
∫ tf

0

[tanh
T(kx)Qtanh(kx) + u

T(t)Ru(t)]dt 6 V (0) − V (tf ) (12)

Since V (t) > 0 and V̇ < 0, lim
tf→∞

V (tf ) = µ which is a non-negative constant. When tf → ∞,

(12) becomes
∫ tf

0

[tanh
T(kx)Qtanh(kx) + u

T(t)Ru(t)]dt 6 V (0) =

(13)

2

n
∑

i=1

pi

ki

ln(coshkiϕi(0)) + α

∫ 0

−h(0)

tanh
T(kϕ(s))Htanh(kϕ(s))ds

Θ can be rewritten as the following form:

Ω +

[

PM

0

]

F (t)[N1 + N3K N2] + [N1 + N3K N2]
TFT(t)

[

PM

0

]T

< 0 (14)

where Ω =

[

P (A + BK) + (A + BK)TP + αH + Q + KTRK PAd

AT
d P −H

]

.

Comparing inequality (14) with Lemma 2, we can obtain
[

PM

0

]

F (t)[N1 + N3K N2] + [N1 + N3K N2]
TFT(t)

[

PM

0

]T

6

(15)

ε

[

PM

0

] [

PM

0

]T

+ ε−1[N1 + N3K N2]
T[N1 + N3K N2]
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Thus, the necessary and sufficient condition for inequality (14) to hold is that there exists a positive

constant ε > 0 such that

Ω + ε

[

PM

0

] [

PM

0

]T

+ ε−1[N1 + N3K N2]
T[N1 + N3K N2] < 0 (16)

Now, pre-and post-multiply (16) by diag(P−1, H−1). (16) becomes

[

AX + XAT + BF + FTBT + αXHX + XQX + FTRF AdS

SAT
d −S

]

+ ε

[

M

0

] [

M

0

]T

+

(17)
ε−1[N1X + N3F N2S]T[N1X + N3F N2S] < 0

where X = P−1, H = S−1, F = KX. According to Schur complement, (17) can become LMI (9) in

the theorem. When LMI (9) is feasible, the guaranteed cost controller designed ensures the closed-loop

system to be asymptotically stable and an upper bound of the closed-loop cost function given by

J0 =2
n

∑

i=1

pi

ki

ln(coshkiϕi(0)) +
1

1 − β

∫ 0

−h(0)

tanh
T(kϕ(s))Htanh(kϕ(s))ds =

2

n
∑

i=1

x̄−1
i

ki

ln(coshkiϕi(0)) +
1

1 − β

∫ 0

−h(0)

tanh
T(kϕ(s)0)S−1

tanh(kϕ(s))ds

Therefore, this completes the proof. �

In fact, any feasible solution to (9) yields a suitable robust guaranteed cost controller. A better

robust guaranteed cost control law minimizes the upper bound J0. Then, we can obtain Theorem 2.

Theorem 2. Consider the nonlinear system (5) and its associated cost function (6). If the

optimization problem

min
ε,X,V,S,K

δ + α · Tr(V ) (18)

subject to 1) LMIs (9), 2)

[

−V Φ
T

Φ −S

]

< 0 has a solution ε̂, X̂, V̂ , Ŝ, K̂, where

ΦΦ
T =

∫ 0

−h0

tanh(kϕ(s))tanh
T(kϕ(s))ds

Tr(·) denotes the trace of the matrix (·), δ = 2
n

∑

i=1

x̄−1
i

ki

ln(coshkiϕi(0)), h0 = h(0) then, the correspond-

ing guaranteed cost control law, u(t) = Ktanh(kx(t)) is an optimal guaranteed cost control. Under

this control law the closed-loop cost function (6) is minimized.

Proof. By Theorem 2, the control law constructed in terms of any feasible solution ε,X, M, S, K

of (9) is a guaranteed cost control law. According to Schur complement, the condition 2) is equivalent

to Φ
TS−1

Φ < V .

Since tr(AB) = tr(BA), we have

∫ 0

−h0

tanh
T(kϕ(s))S−1

tanh(kϕ(s))ds =

∫ 0

−h0

Tr[tanh
T(kϕ(s))S−1

tanh(kϕ(s))]ds =

Tr[ΦΦ
TS−1] = Tr[ΦTS−1

Φ] < Tr(V )

So it follows that

J0 = 2
n

∑

i=1

x̄−1
i

ki

ln(coshkiϕi(0)) +
1

1 − β

∫ 0

−h0

tanh
T(kϕ(s))Htanh(kϕ(s))ds 6 ∆ + αTr(V )

Therefore, the guaranteed cost controller subject to (18) is an optimal guaranteed cost control.

Under this controller the closed-loop cost function (6) is minimized.

This completes the proof. �
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4 Simulation example

Consider the following continuous-time nonlinear system with time delays:

ẋ1(t) = − 0.1x3
1(t) − 0.0125x1(t − d(t)) − 0.02x2(t) − 0.67x3

2(t)−
(19)

0.1x3
2(t − d(t)) − 0.005x2(t − d(t)) − 20u(t)

ẋ2(t) = x1(t)

Suppose that we have 16 HFRBs about ẋi(i = 1, 2) as follows, respectively:

If x1 is Px1
and x2 is Px2

and xd
1 is Pxd

1

and xd
2 is Pxd

2

, then ẋi − biu = Ci
x1

+ Ci
x2

+ Ci

xd
1

+ Ci

xd
2

;

If x1 is Nx1
and x2 is Px2

and xd
1 is Pxd

1

and xd
2 is Pxd

2

, then ẋi − biu = −Ci
x1

+ Ci
x2

+ Ci

xd
1

+ Ci

xd
2

;

· · ·

If x1 is Nx1
and x2 is Nx2

and xd
1 is Nxd

1

and xd
2 is Nxd

2

, then ẋi − biu = −Ci
x1

−Ci
x2

−Ci

xd
1

−Ci

xd
2

;

where xd
1, xd

2 denote x1(t − d(t)), x2(t − d(t)), respectively.

Here, we choose membership functions of Pxi
, Pxd

i
, Nxi

and Nxd
i

as follows:

µPxi
(x) = e−

1

2
(xi−ki)

2

, µNxi
(x) = e−

1

2
(xi−ki)

2

, µP
xd

i

(x) = e−
1

2
(xd

i −ki)
2

, µN
xd

i

(x) = e−
1

2
(xd

i −ki)
2

Then, we have the following 2-dimensional fuzzy hyperbolic model:

ẋ = Atanh(kx) + Adtanh(kxd) + Bu (20)

where A =

[

C1
x1

C1
x2

C2
x1

C2
x2

]

, Ad =

[

C1
xd
1

C1
xd
2

C2
xd
1

C2
xd
2

]

, B =

[

b1

b2

]

.

Fig. 1 shows the network structure of FHM, where f1(x) = tanh(x), f2(x) = x, f3(x) = x, and

g = 1. By neural network BP algorithm[5], we obtain FHM of (20) as in (5):

A =

[

0.0472 −7.5773

2.8487 −0.0617

]

, Ad =

[

−0.3520 −0.2173

0.0329 −0.0440

]

, B =

[

−20

0

]

, k = diag{0.3586, 0.0970}

we assume the uncertainties M = [1 0]T, N 1 = [0.1 0], N 2 = [0.5 0], N3 = [0.1], F (t) = sin(t),

d(t) = 1+0.5 cos(0.9t). Solve the LMI problem in (18). We obtain u = [3.2303 −0.2266]tanh(kx) and

corresponding J = 81.9481. Fig. 2 depicts the behavior of the closed-loop system in solid lines based

on the FHM for the initial conditions x(0) = [0.75 − 0.5]T. Fig. 3 shows that the control input u.

Simulation result demonstrates the effectiveness of the fuzzy hyperbolic guaranteed control approach.

Fig. 1 The network structure of FHM
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Fig. 2 State response of the closed-loop system Fig. 3 The response of control input

5 Conclusion

In this paper, we propose the delay-independent fuzzy hyperbolic guaranteed cost control for

nonlinear uncertain systems with time delay using FHM. The design problem of DI-FHGCC is converted

into linear matrix inequalities. The controller designed achieves closed-loop asymptotic stability and

provides an upper bound on the closed-loop value of cost function. Simulation example is provided to

illustrate the design procedure of the proposed method.

The FHM combines the merits of fuzzy model, neural network model and linear model. This kind

of model shows a new way for nonlinear complex system modeling without enough expert experience:

First we derive the FHM only if we know some inference relationship between the derivative of state

variables and the state variables (input variables); then we use BP (or other neural network learning

algorithms) to identify the model parameters. Also, we can describe the fuzzy hyperbolic controller with

linguistic information. That is, the controller is also a kind of fuzzy controller. Therefore, comparing

fuzzy hyperbolic guaranteed cost control to other guaranteed cost control, we note two important

advantages of the former: 1) the fuzzy hyperbolic controller is transparent in the sense that it can be

described by a set of If-Then linguistic rules; and 2) the fuzzy hyperbolic controller is bounded.
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