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Abstract For a class of MIMO plants, using the idea of the high-frequency gain matrix Kp =
L2D2S2 factorization, the problem of design and analysis for MRAC is further investigated under
the single assumption of known signs of the leading principal minors of Kp. By proving the Lp

and L2δ relationship properties between the input and the output and the multivariable swapping
lemmas, the relation between all the signals in the closed-loop system and the normalized signal is
obtained and the stability and tracking performance of the adaptive system is analyzed rigorously,
the proof procedure being more compact.
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1 Introduction

For the past 20 years, the study of adaptive control problem for MIMO continuous systems has
been focused on by many researchers[1,2] . When using direct MRAC schemes, one drawback is that one
has to assume stringent prior knowledge assumption on the high-frequency gain matrix Kp, i.e., there
exists a known matrix Sp such that KpSp = (KpSp)

T > 0.

To relax the restriction, many researchers have done much work. Recently, in [3], by introducing
three factorizations of Kp, only under the assumption that the signs of the leading principal minors
of Kp were known, the authors gave the design and analysis of MRAC for ideal MIMO systems. In
the stability analysis of [3], however, the proof of g̃ ∈ L2 was mistaken, while the property played an
essential role in the analysis. In [4], by redefining the normalizing signal, Xie proved the conclusion
rigorously.

The purpose of this paper is to further study MRAC problem by using Kp = L2D2S2. The research
idea originates from the following reasons: 1) Owing to the reason that three factorizations of Kp lead to
different adaptive systems, this makes much difference in the analysis of stability. 2) For SISO systems,
some important conclusions in [1], such as Lemma 3.3.2, the swapping Lemma A1 and A2, etc., are
often used in the analysis of adaptive controllers. While for the MIMO case, these conclusions are no
longer applicable, which makes it difficult to extend the existing results for SISO systems to the MIMO
case. By proving similar conclusions for MIMO systems, establishing the properties of adaptive laws,
and redefining the normalizing signal, the relationship properties between the normalizing signal and
all the signals in the closed-loop system can be established. Since the multivariable swapping lemmas
are used, there is no need to decompose the sector into the single variable. This leads to the whole
proof procedure more compact. 3) Stability of the closed-loop system and convergence of the tracking
error are analyzed rigorously.

2 Problem statement

Consider the following MIMO system with zero initial value described by

y = G(s)u (1)

where u,y ∈ Rm are the input and output, respectively, s denotes the differential operator.

The control objective is to design an adaptive control law so that all the signals in the closed-loop
system are bounded and the output tracks the output ym of the following reference model

ym = Wm(s)r (2)
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where Wm(s) ∈ Rm×m[s], r ∈ Rm is any reference signal satisfying r, ṙ ∈ L∞. Define the tracking
error as

e(t) = y(t) − ym(t) (3)

For (1), we need the following assumptions:

A1) The transmission zeros of G(s) whose definition is given in [2] have negative real parts, and

every element of G−1(s) is analytic in Re[s] > − δ0
2 for some positive constant δ0.

A2) G(s) is strictly proper, has full rank and its modified left interactor matrix ξm(s) whose
definition is given in [1] is diagonal and known. ξm(s) is defined as the modified left interactor matrix
of G(s) if the high frequency gain matrix Kp = lim

s→∞

ξm(s)G(s) is finite and nonsingular.

A3) The observability index ν of G(s) is known.

A4) The signs of leading principal minors of Kp are known.

The reference model (2) satisfies the following assumptions:

M1) All poles and zeros of Wm(s) are stable, and every element is analytic in Re[s] > − δ0
2 .

M2) The zero structure at infinity of Wm(s) is the same as that of G(s). We choose Wm(s) =
ξ−1

m (s).

Notations: For simplicity, we sometimes denote the time function x(t) by x, the differential ope-
rator polynomial X(s) by X, and the 2δ-norm ‖xt‖2δ by ‖x‖, where ‖xt‖2δ = [

∫ t

0
e−δ(t−τ)|x(τ )2dτ ]1/2

for any δ > 0 and x(t) ∈ Rm; ‖xt‖2δ =
n

∑

i=1

‖(xi)t‖2δ for any x = (x1, · · · ,xn) ∈ Rm×n. c denotes some

positive constant independent of µ1 and µ2.

3 The design of MRAC using Kp = L2D2S2 factorization

Firstly, we give an important lemma on Kp factorization.

Lemma 1[3]. Every real matrix Kp ∈ Rm×m with nonzero leading principal minors σ1, · · · , σm

can be factored as Kp = L2D2S2, where L2 is a unity lower triangular matrix, S2 is a positive definite
matrix, D2 = Γ sgn(D), D = diag{σ1,

σ2
σ1

, · · · , σm
σm−1

}, with Γ being an arbitrary positive diagonal
matrix.

Next we use Lemma 1 to design a direct MRAC. As in [3], one gets

ξm(s)e = Kp(u − θ∗T
ω) = L2D2S2(u − θ∗T

ω) (4)

where θ∗Tω = θ∗T
1 ω1, +θ∗T

2 ω2, +θ∗

3y + θ∗

4r, θT = (θ∗T
1 , θ∗T

2 , θ∗

3 , θ∗

4), ω = (ωT
1 ,ωT

2 ,yT, rT)T, θ∗

1 , θ∗

2 ∈

Rm(ν−1)×m, θ∗

3 , θ∗

4 ∈ Rm×m, ω1 =
γ(s)
p(s)

θ∗Tω, ω2 =
γ(s)
p(s)

y, γ(s) = (I, Is, · · · , Isν−2)T, p(s) = λ0 +

λ1s+ · · ·+sν−1 is an arbitrary Hurwitz polynomial, and 1
p(s)

is analytic in Re[s] > − δ0
2 . The adaptive

control law is chosen as

u = θT
ω (5)

where θ is the estimate of θ∗. Set Ψ
∗ = D2S2 and define

W (s) =
1

f(s)
(6)

where f(s) is a Hurwitz polynomial with degree equal to the largest relative degree n∗ of all elements

of Wm(s), and W (s) is analytic in Re[s] > − δ0
2 . Noting that L2 and Ψ

∗ are constants, by Lemma 1,
one has

L−1
2 W (s)ξm(s)e = Ψ

∗(W (s)u− W (s)θ∗T
ω) (7)

Define

z = −W (s)ξm(s)e, z0 = −W (s)u, φ = W (s)ω (8)

Similar to [3], one gets

z = (0,Λ∗T
2 ζ2, · · · ,Λ

∗T
m ζm)T + Ψ

∗(θ∗T
φ + z0) (9)

where ζT
i = (z1, z2, · · · , zi−1), i = 2, · · · , m. Choose the estimate of z as

ẑ = (0,ΛT
2 ζ2, · · · ,Λ

T
mζm)T + Ψ(θT

φ + z0) (10)
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where Λ,Ψ , θ are the estimates of Λ
∗

i ,Ψ∗, θ∗, respectively, and define

Ψ̃ = Ψ − Ψ
∗, θ̃ = θ − θ∗, Λ̃i = Λi −Λ

∗

i , ξ = θT
φ + z0, ℵ

T = (0, Λ̃
T

2 ζ2, · · · , Λ̃
T

mζm) (11)

Then the normalized estimation error is defined as

ε =
z − ẑ

η2
s

= −
1

η2
s

(ℵ + Ψ̃ξ + Ψ
∗θ̃T

φ) (12)

where η2
s = 1 + n2

s, n2
s = ‖ut‖

2
2δ0

+ ‖yt‖
2
2δ0

, δ0 is the same as that in assumption A1. Set

θ∗T =





θ∗T
11 θ∗T

12 θ∗

13 θ∗

14

· · · · · ·
θ∗T

m1 θ∗Tm2 θ∗

m3 θ∗

m4



 , Ψ =





Ψ
∗

11 Ψ
∗

12 · · · Ψ
∗

1m

· · · · · ·
Ψ

∗

m1 Ψ
∗

m2 · · · Ψ
∗

mm



 (13)

where θ∗T
i1 , θ∗T

i2 ∈ R1×m(ν−1), θ∗

i3, θ
∗

i4 ∈ R1×m, i = 1, · · · , m. Since S2 is constant and positive definite,
it is assumed that there exist two known positive constants m1 and m2 such that m2I 6 S2 6 m1I .
Now, one needs to prove a useful lemma.

Lemma 2. Define S̄2 = S2 ⊗ I , where ⊗ expresses the Kronecker product. Then
1) If S2 is positive definite, then S̄2 is also positive definite; 2) m2I 6 S̄2 6 m1I .
Proof. The proof is omitted due to the limited space.
Let us now assume that there exists known constant M0 such that |Λi| 6 M0, |Ψ̄| 6 M0,

|θ̄
∗

| 6 m2M0/m1, and choose the adaptive laws

Λ̇i =







γLi
εζ, if |Λi| < M0, or |Λi| = M0, and (γLi

εiζi)
T
Λi 6 0

(

I − ΛiΛ
T
i

Λ
T
i Λi

)

γLi
εiζi, otherwise

˙̄
Ψ =







γΨε⊗ ξ, if |Ψ̄| < M0, or |Λ̄| = M0 and (γΨε⊗ ξ)
T
Ψ̄ 6 0

(

I − Ψ̄Ψ̄
T

Ψ̄
T
Ψ̄

)

γΨε ⊗ ξ, otherwise
(14)

˙̄θ =







[Γ sgn(D)ε] ⊗ φ, if |θ̄| < M0, or |θ̄| = M0 and ([Γ sgn(D)ε] ⊗ φ)Tθ̄ 6 0
(

I − θ̄θ̄
T

θ̄
T
θ̄

)

Γ sgn(D)ε ⊗ φ, otherwise

where Ψ̄
∗

= (Ψ∗

11, · · · ,Ψ
∗

1m, · · · ,Ψ∗

m1, · · · ,Ψ
∗

mm)T, θ̄∗T = (θ∗T
11 , θ∗T

12 , θ∗

13, θ
∗

14, · · · , θ
∗T
m1, θ

∗T
m2, θ

∗

m3, θ
∗

m4),
Ψ̄, θ̄ are the estimates of Ψ̄

∗

, θ̄
∗

, εi is the ith element of ε. γLi
, γΨ ,Γ > 0, i = 2, 3, · · · , m. The initial

values are chosen to satisfy |Λi(0)| 6 M0, P̄P (0)| 6 M0, |θ̄(0)| 6 M0. �

4 Main results

With (5), one gets
ũ = u − θ∗T

ω = θ̃T
ω (15)

From (15), ξm(s) = W−1
m (s),(1), (2) and (4), it follows that the input and output of the closed-loop

system are
u = G−1(s)Wm(s)(r + L2Ψ

∗

ũ), y = Wm(s)(r + L2Ψ
∗

ũ) (16)

We first give a few useful lemmas.
Lemma 3[5]. Consider the system y = H(s)u, where y,u ∈ Rm, and H(s) = (hik(s)) ∈ Rm×m[s].

Let every element of H(s) be analytic in Re[s] > − δ
2 , where δ > 0 is any constant.

1) If every element of H(s) is proper, then ‖yt‖2δ 6 ‖H(s)‖∞δ‖ut‖2δ .
2) Furthermore, when every element of H(s) is strictly proper, then |y(t)| 6 ‖H(s)‖2δ‖ut‖2δ ,

where ‖H(s)‖∞δ =

m
∑

i,k=1

‖hik(s)‖∞δ, ‖H(s)‖∞δ =

m
∑

i,k=1

‖hik(s)‖2δ , ‖hik(s)‖∞δ = supw |hik(jw − δ
2)|,

‖hik(s)‖2δ = 1
√

2p − δ
‖(s + p)hik(s)‖∞δ,∀p > δ/2.

Lemma 4. (Multivariable swapping) For any ϑ : R+ 7→ Rn×m, ϕ : R+ 7→ Rn, where ϑ is
differentiable, W (s) is defined as (6) with a minimal realization (A,B,C). Then

W (s)(ϑT
ϕ) = ϑTW (s)ϕ−

(

C

∫ t

0

eA(t−τ)X(τ )ϑ̇(τ )dτ

)T
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where X = (sI − A)−1(BϕT).
Proof. See Section 5.
Lemma 5. (Multivariable swapping) Let ϑ : R+ 7→ Rn×m, ϕ : R+ 7→ Rn, and ϑ, ϕ be differen-

tiable. Then
ϑT
ϕ = F1(s, α1, · · · , αm)(ϑ̇T

ϕ + ϑT
ϕ̇) + F (s, α1, · · · , αm)(ϑT

ϕ)

where F (s, α1, · · · , αm) = diag

{

αk
1

(s + α1)
k , · · · , αk

m

(s + αm)k

}

, F1(s, α1, · · · , αm) =
I − F (s, α1, · · · , αm)

s ,

k > 1, αi are arbitrary constants, i = 1, · · · , m. Furthermore, for α0 = min{α1, · · · , αm} > δ,
‖F1(s, α1, · · · , αm)‖∞δ 6 c

α0
, where c is a positive constant independent of αi, δ > 0 is any given

constant.
Proof. See Section 5.
Define the normalizing signal ηs and the fictitious normalizing signal ηf as follows:

ηs = (1 + ‖ut‖
2
2δ0 + ‖yt‖

2
2δ0 )1/2, ηf (t) = (1 + ‖ut‖

2
2δ + ‖yt‖

2
2δ)

1/2 (17)

for any δ ∈ (0, δ0], where ns(t) is defined in Lemma 6.
Lemma 6. All the signals in the closed-loop system have the following properties:
1) Λi, Ψ̄, θ̄,Ψ , θ ∈ L∞, i = 2, · · · , m;
2) ωi/ηf , ‖ωi‖/ηf , ‖ω‖/ηf , ηs/ηf ,y/ηf ,u/ηf ,ω/ηf ∈ L∞, i = 1, 2.
3) W1(s)ω/ηf , ξ/ηf , zi/ηf , ζi/ηf ,φ/ηf , ℵ/ηf ∈ L∞, i = 1, · · · , m, where every element of W1(s)

is strictly proper and analytic in Re[s] > − δ0
2 .

4) ‖ẏ‖/ηf ∈ L∞. If ṙ ∈ L∞, thus ‖ω̇‖/ηf ∈ L∞.
5) When δ = δ0, 1)∼4) are satisfied by replacing ηf with ηs.

6) Λ̇i,
˙̄
Ψ, ˙̄θ, Ψ̇ , θ̇, ε, εηs, εns ∈ L∞ ∩ L2.

7) ξ/ηs, zi/ηs, ζi/ηs, ℵ/ηs ∈ L2, i = 1, · · · , m, where n2
s = η2

s − 1, ζ1 = 0.
Proof. The proof is given by following the same approach as in [4].
We are now in a position to state main results in this paper.
Theorem 1. Consider the direct MRAC based on Kp = L2D2S2 consisting of system (1),

reference model (2), control law (5), and adaptive laws (14). If assumptions A1)∼A4) and M1)∼M2)
hold, then

1) All the signals in the closed-loop system are uniformly bounded.
2) lim

t→∞

e(t) = 0.

Proof. By (15)∼(17) and using Lemma 3, one has

η2
f 6 c + c‖ũ‖2

6 c + c‖θ̃T
ω‖2 (18)

By Lemma 5, one has

θ̃Tω = F1(s, α1, · · · , αm)( ˙̃θ
T

ω + θ̃T
θ̇) + F (s, α1, · · · , αm)(θ̃T

ω) (19)

where F = diag

{

αn∗

1

(s + α1)
n∗

, · · · , αn∗

m

(s + αm)n∗

}

, F1 =
I − F2(s, α1, · · · , αm)

s , α1, · · · , αm > δ are some

constants, and n∗ is defined as (6). Applying Lemma 4, one has

θ̃ω = W−1(s)

[

θ̃TW (s)ω − (C

∫ t

0

eA(t−τ)X(τ )
˙̃
θ(τ )dτ )T

]

θT
ω = W−1(s)

[

θTW (s)ω − (C

∫ t

0

eA(t−τ)X(τ )θ̇(τ )dτ )T
]

(20)

where W (s) is defined as (6). Combining (19) with (20) leads to

θ̃T
ω = F1(

˙̃θ
T

ω + θ̃T
ω̇) + FW−1(s)

[

θ̃TW (s)ω − (C

∫ t

0

eA(t−τ)X(τ ) ˙̃θ(τ )dτ )T
]

(21)

By Lemma 1, Ψ
∗ = D2S2 is nonsingular. Hence from (3.9), it follows that

θ̃T
φ = −(Ψ∗)−1(εη2

s + ℵ + Ψξ) + ξ (22)
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By (5), (8), and (9), one obtains

−z0 = W (s)u = W (s)(θT
ω) = θT

φ − (C

∫ t

0

eA(t−τ)X(τ )θ̇(τ )dτ )T (23)

which implies by (11) and θ̇ =
˙̃
θ. that

ξ = (C

∫ t

0

eA(t−τ)X(τ )θ̇(τ )dτ )T = (C

∫ t

0

eA(t−τ)X(τ ) ˙̃θ(τ )dτ )T (24)

Combining (10), (11), and (13), one concludes that

θ̃T
ω = F1(

˙̃
θ
T

ω + θ̃T
ω̇) − FW−1(s)(Ψ∗)−1[εη2

s + ℵ + Ψ(C

∫ t

0

eA(t−τ)X(τ )
˙̃
θ(τ )dτ )T] (25)

By taking the 2δ-norm on both sides of (14), and using Lemma 5 and Ψ ∈ L∞, there exists a constant
c independent of α0 and µ such that

‖θ̃T
θ‖ =

c

α0
(‖

˙̃
θ
T

ω‖ + ‖θ̃T
ω̇‖) + cαn∗

0 (‖εη2
s‖ + ‖ℵ‖ + ‖C

∫ t

0

eA(t−τ)X(τ )
˙̃
θ(τ )dτ‖) (26)

By Lemma 4, X = (sI − A)−1BωT =
∫ t

0
eA(t−τ)BωT(τ )dτ . Hence by (17) and Lemmas 3 and 6, one

gets

‖εη2
s‖ 6 ‖εηf‖ + ‖εnsηf‖ (27)

‖C

∫ t

0

eA(t−τ)X(τ ) ˙̃θ(τ )dτ‖ 6 c‖ ˙̃θηf‖ (28)

Using ‖ηf‖ > 1 and Lemma 6 leads to ‖
˙̃
θ
T

ω‖ 6 c‖
˙̃
θf‖, ‖θ̃

Tω̇‖ 6 c‖ω̇‖ 6 cηf , ‖ε‖ 6 ‖εηf‖, ‖εn
2
s‖ 6

‖εnsηf‖, which together with (26)∼(28) imply that

‖θ̃T
ω‖ 6

1

α0
cηf + cαn∗

0 ‖g̃ηf‖ (29)

by choosing α1, · · · , αm to satisfy that 1
α0

< αn∗

0 , where |g̃|2 = |ε|2 + |
˙̃
θ|2 + |εns|

2 +
|ℵ|2

η2
s

. By Lemma

6, one has g̃ ∈ L2. By following the similar approach as in [4], the conclusions can be proved. �

5 Proof of Lemmas 4 and 5

Proof of Lemma 4. Set φ = W (s)ω. Since f(s) is Hurwitz polynomial, W (s) can be realized
as Ẋ = AX +BωT, φT = CX, X(0) = 0, where A is a stable matrix. Obviously, θ̃TW (s)ω = θ̃Tφ =
θ̃TXTCT. Similarly, ψ = W (s)(θ̃Tω) can be realized as Ẏ = AY + BωTθ̃, ψT = CY , Y (0) = 0,

from which, W (s)(θ̃Tω) = Y TCT. Obviously, d
dt

(Xθ̃ − Y ) = A(Xθ̃ − Y ) + X ˙̃θ, whose solution

is Xθ̃ − Y =
∫ t

0
eA(t−τ)X(τ )

˙̃
θ(τ )dτ due to X(0)θ̃(0) − Y (0) = 0. Thus θ̃TW (s)ω − W (s)(θ̃Tω) =

(Xθ̃ − Y )TCT = (C
∫ t

0
eA(t−τ)X(τ )

˙̃
θ(τ )dτ )T. �

Proof of Lemma 5. Set ϑT = (ϑ1, · · · ,ϑm)T, ϑi ∈ Rn. Applying Lemma A.2 in [1], one has

θ̃T
ω =







θ̃T
1 ω
...

θ̃T
mω






=









F
(1)
1 (s, α1)(

˙̃θ
T

1 ω + θ̃T
1 ω̇)

...

F
(m)
1 (s, αm)( ˙̃θ

T

mω + θ̃T
mω̇)









+







F (1)(s, α1)(θ̃
T
1 ω

...
F (m)(s, αm)(θ̃T

mω






=

F1(s, α1, · · · , αm)( ˙̃θ
T

ω + θ̃T
ω̇) + F (s, α1, · · · , αm)(θ̃T

ω)

and ‖F
(i)
1 (s, αi)‖∞δ 6 c

αi
for αi > δ, where F (i)(s, αi) = αk

i

(s + αi)
k , F

(i)
1 (s, αi) =

1 − F (i)(s, αi)
s , Thus

for α0 > δ, ‖F1(s, α1, · · · , αm)‖∞δ 6

m
∑

i=1

c

αi
6

c

α0
, c > 0 is a constant independent of αi and α0. �
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6 Conclusion

The design and analysis of multivariable MRAC based on Kp = L2D2Ss factorization are studied
by proving the Lp and L2δ relationship properties between the input and the output, and the swapping
lemmas 4 and 5 for MIMO systems, and by relating all the signals in the closed-loop system with the
normalizing signal and proving g̃ ∈ L2. Compared with the existing results, the proof procedure is
more compact.
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-real-world applications.

CEC 2006 solicits papers from all topics in evolutionary computation, including, but not limited to:
-theory of evolutionary computation,
-representation and operators,
-combinatorial & numerical optimization,
-coevolution & collective behavior,
-multiobjective evolutionary algorithms,
-evolutionary design,
-evolvable hardware,
-evolvable software,
-evolving neural networks & fuzzy systems,
-evolving learning systems,
-evolutionary intelligent agents,
-developmental systems,
-molecular & quantum computing,
-bioinformatics & bioengineering,
-ant colonies & immune systems,
-particle swarm & differential evolution, and
-real-world applications.

Cross-fertilization of the three technical disciplines and newly emerging technologies is strongly encouraged. All
papers are to be submitted electronically through the Congress website. For general inquiries, please contact
General Chair Gary G. Yen at gyen@okstate.edu. For program inquiries, contact IJCNN Program Chair Lipo
Wang at elpwang@ntu.edu.sg, FUZZ-IEEE Program Chair Piero Bonissone at bonissone@research.ge.com, or
CEC Program Chair Simon M. Lucas atsml@essex.ac.uk, or.

Important Due Dates
Special Session Proposal: December 31, 2005

Paper Submission: January 31, 2006
Tutorial Proposal: January 31, 2006

www.wcci2006.org


