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Abstract In this paper, we study the robust control for uncertain Markov jump linear singularly

perturbed systems (MJLSPS), whose transition probability matrix is unknown. An improved heuris-

tic algorithm is proposed to solve the nonlinear matrix inequalities. The results of this paper can

apply not only to standard, but also to nonstandard MJLSPS. Moreover, the proposed approach is

independent of the perturbation parameter and therefore avoids the ill-conditioned numerical prob-

lems.
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1 Introduction

Recently, the singular perturbation technique has been a strong tool to study multiple-time-scale

systems[1]. On the other hand, Markov jump system has been noticed for many years[2]. In [3] the

bounded real property was utilized to study the H∞ control for Markov jump linear singularly perturbed

systems (MJLSPS), which result in a set of coupled Riccati equations. A set of coupled matrix inequlity

condition was constructed in [4], and an iterative algorithm was given to solve it. However, the initial

values can be obtained only under some conservative conditions. In this paper, the results in [4] are

generalized to uncertain cases. Furthermore, a more relaxed algorithm is also proposed.

2 Problem formulations

Consider the following uncertain MJLSPS:











ẋ(t) = Ã11(r(t))x1(t) + Ã12(r(t))x2(t) + B̃1(r(t))u(t) + D1(r(t))w(t)

ε · ẋ2(t) = Ã21(r(t))x1(t) + Ã22(r(t))x2(t) + B̃2(r(t))u(t) + D2(r(t))w(t)

z(t) = G1(r(t))x1(t) + G2(r(t))x2(t) + H(r(t))u(t) + L(r(t))w(t)

(1)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the slow, fast state variables, u(t) ∈ Rm is the control

input, w(t) ∈ Rq is the external disturbance, z(t) ∈ Rp is the output vector. ε is the singular per-

turbation parameter which satisfies 0 < ε � 1. Ã11(r(t)), Ã12(r(t)), Ã21(r(t)), Ã22(r(t)), B̃1(r(t)),

B̃2(r(t)), D1(r(t)), D2(r(t)), G1(r(t)), G2(r(t)), H(r(t)) and L(r(t)) are the functions of the stochas-

tically jumping process {r(t)}, where r(t) is a Markov jump process taking values in the finite set

S = {1, 2, · · · , s}. Denote Π = [πij ] as the transition matrix, where i, j = 1, 2, · · · , s. Then the trn-

asition probability is Pr{r(t + ∆) = j|r(t) = i} =

{

πij∆ + o(∆), i 6= j

1 + πii∆ + o(∆), i = j
, where ∆ > 0, πij > 0,

i 6= j. For every i, we have
s

∑

j=1

πij = 0. In this paper, we assume that Π is unknown, but can

be represented as a polutope, i.e., Π =
s

∑

l=1

µlΠl, where Πl = [πl
ij ] is a known transition matrix and
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µl is the unknown scalar satisfying
h

∑

l=1

µl = 1. For simplicity, we denote Ã11(r(t)) = Ã11i when

r(t) = i. The unknown matrix can be represented as Ã11i = A11i + ∆A11i, Ã21i = A21i + ∆A21i,

Ã12i = A12i + ∆A12i, Ã22i = A22i + ∆A22i, B̃1i = B1i + ∆B1i, B̃2i = B2i + ∆B2i, where A11i, A12i,

A21i, A22i, B1i and B2i are known matrices. ∆A11i, ∆A21i, ∆A21i, ∆A22i, ∆B1i and ∆B2i are uncer-

tain terms which satisfy

[

∆A11i ∆A12i ∆B1i

∆A21i ∆A22i ∆B2i

]

=

[

Γ1i

Γ2i

]

Υi(t)[Θ1i Θ2i Zi], where Γ1i ∈ Rn1×nf ,

Γ2i ∈ Rn2×nf , Θ1i ∈ Rnf×n1 , Θ2i ∈ Rnf×n2 and Zi ∈ Rnf×m are known matrices. The uncertain

matrix Υi(t) ∈ Rnf×nf satisfy ΥT
i (t)Υi(t) = Inf

. For r(t) = i, i ∈ S, we define x(t) =

[

x1(t)

x2(t)

]

,

Ãi =

[

Ã11i Ã12i

Ã21i Ã22i

]

, B̃i =

[

B̃1i

B̃2i

]

, Di =

[

D1i

D2i

]

, Gi = [G1i G2i], Ai =

[

A11i A12i

A21i A22i

]

, Bi =

[

B1i

B2i

]

,

Γi =

[

Γ1i

Γ2i

]

, Θi = [Θ1i Θ2i], [∆Ai ∆Bi] = ΓiΥi(t)[Θi Zi], Eε =

[

In1
0

0 ε · In2

]

. It is obvious that

Ãi = Ai + ∆Ai, B̃i = Bi + ∆Bi. Finally, (1) can be rewritten as
{

Eεẋ(t) = Ãix(t) + B̃iu(t) + Diw(t)

z(t) = Gix(t) + Hiu(t) + Liw(t)
(2)

3 Design of H∞ controller

Consider the state-feedback controller u(t) = K(r(t))x(t). In this case, the closed-loop system

becomes
{

Eεẋ(t) = (Ã(r(t)) + B̃(r(t))K(r(t)))x(t) + D(r(t))w(t)

z(t) = (G(r(t)) + H(r(t))K(r(t)))x(t) + L(r(t))w(t)
(3)

Theorem 1. If there exist matrices P11i > 0, P22i > 0, P21i and real number αi > 0 for

i = 1, 2, · · · , s and l = 1, 2, · · · , h, such that the following inequalities hold.

Ψ
l
i (αi, K, Pi) ≡























(Ai + BiKi)
TPi + PT

i (Ai + BiKi) +
s

∑

j=1

πl
ijEPj+

αiP
T
i ΓiΓ

T
i Pi + α−1

i (Θi + ZiKi)
T(Θi + ZiKi)











∗ ∗

DT
i P −γ2I ∗

Gi + HiKi Li −I













< 0 (4)

where Pi =

[

P11i 0

P21i P22i

]

and E =

[

In1
0

0 0

]

, then there exists ε∗ > 0 such that for any ε ∈ (0, ε∗], the

closed-loop system (3) is robustly stochstically stable, and for any Tf > 0, one has E{
∫ Tf

0
zT(t)z(t)dt} <

γ2
∫ Tf

0
wT(t)w(t)dt.

The proof is just like those in [4]. In the following, we propose an iterative approach to solve (4),

which is different from the one in [4]. First, we define

Σl
i(αi, Ki, Pi, λ) ≡



















(Ai + BiKi)
TPi + PT

i (Ai + BiKi) + πl
iiEPi+

λ
s

∑

j=1,j 6=i

πl
ijEPj + αiP

T
i ΓiΓ

T
i Pi + α−1

i (Θi + ZiKi)
T(Θi + ZiKi)







∗ ∗

DT
i P −γ2I ∗

Gi + HiKi Li −I













< 0 (5)

where λ is a real number in [0,1]. If Pi is fixed as P ∗
i , Σl

i(αi, Ki, P
∗
i , λ) can be transformed as LMI, and

we denote it as
−→
Σ l

i(αi, Ki, P
∗
i , λ) < 0; if Ki is fixed as K∗

l and αi is fixed as α∗
i , Σl

i(α
∗
i , K∗

i , Pi, λ) can

also be transformed as LMI, and we denote it as
←−
Σ l

i(α
∗
i , K∗

i , Pi, λ) < 0. Then, we can summary the

iterative algorithm as follows:

Step 1. Let k = 0, Λ = 0, λ = 0. Compute the initial values αi(0), Ki(0) and Pi which satisfy

Σl
i(αi, Ki, Pi, 0) < 0.
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Step 2. Let k = k+1, λk = k/2Λ and fix Pi as Pi(k−1). If the LMI
−→
Σ l

i(αi, Ki, Pi(k−1), λk) < 0

upon αi and Ki is feasible, we denote the solutions as αi(k) and Ki(k). Let Pi(k) = Pi(k − 1), then

goto Step 4. Otherwise, goto Step 3.

Step 3. Fix αi, Ki as αi(k − 1) and Ki(k − 1), respectively. If the LMI
←−
Σ l

i(αi(k − 1), Ki(k −

1), Pi, λk) < 0 upon Pi is feasible, then we can minimize
s

∑

i=1

trace(Pi) suject to
←−
Σ l

i(αi(k − 1), Ki(k −

1), Pi, λk) < 0. Denote the corresponding solutions as Pi(k). Let αi(k) = αi(k − 1) and Ki(k) =

Ki(k − 1), goto Step 4. Otherwise, Let Λ = Λ + 1. If Λ 6 Λmax (Λ is a prescribed threshold), then let

K = 0 and return to Step 2. If Λ > Λmax, this algorithm cannot give feasible solutions, it exits.

Step 4. If k < 2Λ, then return to Step 2. If k = 2Λ, we obtain the feasible solutions αi(k), Ki(k)

and Pi(k).

Remark. In [4], one necessary condition for the initial problem is feasible is that each sub-system

has to be stabilizable. This is a rather conservative condition for Markov jump systems. In this paper,

the solution space of initial problem Σl
i(αi, Ki, Pi, 0) < 0 is a subset of that of the original problem

Σl
i(αi, Ki, Pi, 1) < 0. Therefore the above-mentioned problem is avoided. In addition, we do not require

the input matrix to be square, which is an assumption of [5].

4 Conclusions

This paper proposed some new results based on [4]. A more effective algorithm is proposed, which

can eliminate some unneccessry assumptions in [4].
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