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Abstract The general nonlinear system with structural uncertainty is dealt with and necessary
conditions for it to be robust passivity are derived. From these necessary conditions, sufficient
conditions of zero state detectability are deduced. Based on passive systems theory and the technique
of feedback equivalence, sufficient conditions for it to be locally (globally) asymptotically stabilized
via smooth state feedback are developed. A smooth state feedback control law can be constructed
explicitly to locally (globally) stabilize the equilibrium of the closed-loop system. Simulation example
shows the effectiveness of the method.
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1 Introduction

At an early stage, passive or dissipative systems theory was primarily used to analyze stability

of nonlinear systems. In recent 15 years, great developments of synthesis techniques that combine the

theory of passive systems with geometric nonlinear control theory have been made[1∼7]. In particular,

using the passivity-based synthesis approach, Byrnes[1] presented a fairly complete solution to the

fundamental question of when an affine nonlinear system is feedback equivalent to a passive system via

state feedback. In the passivity-based synthesis framework, the aim of control action is to render a

nonlinear system passive.

Lin[2,3] extended the idea and method developed in [1] to general nonlinear control systems. It

is very natural to expect that the results of Lin[2] can be extended to general nonlinear systems with

structural uncertainty. Indeed, this is precisely the point of view to be pursued in this paper. We will

show how the theory of passive systems developed in [1,2] can be extended to general nonlinear systems

with structural uncertainty, and how the problem of asymptotic stabilization of this kind of nonlinear

systems can be solved by passive systems theory and the technique of feedback equivalence.

2 System description and preliminaries

Consider a nonlinear system with structural uncertainty described by

ẋ = f (x, u) + ∆f (x) (1a)

y = h(x, u) (1b)

where x ∈ Rn, u ∈ Rm, and y ∈ Rm are the state, input and output of the system, respectively.

f : Rn×Rm → Rn, h : Rn×Rm → Rm are assumed to be smooth and satisfy f (0,0) = 0, h(0,0) = 0,

∆f : Rn → Rn represents the structural uncertainty characterized by

∆f (x) = e(x)δ(x), ∆f (0) = 0 (2)

where e : Rn → Rn×m, with e(0) = 0 being a known matrix whose entries are given smooth functions,

and δ : Rn → Rm is an unknown vector-valued function. It is assumed that δ(x) is constrained to a

given smooth function n : Rn → Rm, i.e.,

Γ = {δ(x) : ‖δ(x)‖ 6 ‖n(x)‖} (3)
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where ‖ · ‖ stands for the Euclidean norm. If δ(x) ∈ Γ , then δ(x) or ∆f (x) is said to be admissible.

Definition 1. An uncertain system of the form (1) is said to be robust passivity if there exists a

C0 nonnegative function V : Rn → R+ with V (0) = 0 such that for any u ∈ Rm, x0 ∈ Rn and for all

admissible ∆f (x),

V (x(t)) − V (x0) 6

∫ t

0

y
T(τ )u(τ )dτ (4)

where x(t) = φ(t, x0, u) is the solution to (1a) with x(0) = x0.

If V is Cr(r > 1), the passive inequality (4) is equivalent to

dV (x(t))

dt
6 y

T(t)u(t) (5)

for any u ∈ Rm, and for all admissible ∆f (x).

Definition 2. An input-output nonlinear system with structural uncertainty (1) is said to be

locally zero-state detectable if there is a neighborhood N of x = 0 such that ∀x ∈ N ,

h(φ(t, x; u), u)|u = 0 = 0 ∀t > 0 ⇒ lim
t→∞

φ(t, x;0) = 0

If N = Rn, system (1) is zero-state detectable.

Throughout this paper, let f 0(x), g0(x) and g0
i (x) denote the vector fields defined by

f 0(x) = f (x,0) ∈ R
n
, g

0
i (x) = gi(x,0) =

∂f

∂ui

(x,0) ∈ R
n
, 1 6 i 6 m (6)

g0(x) =
∂f

∂u
(x,0) = [g0

1(x), · · · , g0
m(x)] ∈ R

n×m (7)

With the vector fields f 0, g
0
1, · · · , g

0
m, we introduce the distribution

D = span{ad
k
f0

g
0
i : 0 6 k 6 n − 1, 1 6 i 6 m} (8)

Two sets Ω and S associated with D are defined respectively by

Ω = {x ∈ N ⊆ R
n : L

k
f0

V (x) = 0, k = 1, · · · , r} (9)

S = {x ∈ N ⊆ R
n : L

k
f0

Lτ V (x) = 0, ∀τ ∈ D, k = 0, 1, · · · , r − 1} (10)

Let

g(x, u) =

∫ 1

0

∂f(x, α)

∂α

∣

∣

∣

∣

α=θu

dθ = (g1(x, u), · · · , gm(x, u)) (11)

Then the nonlinear system (1a) can be always represented as

ẋ = f 0(x) + ∆f (x) +
m

∑

i=1

gi(x, u)ui (12)

Similarly, (12) can be further decomposed as

ẋ = f 0(x) + ∆f (x) + g0(x)u +

m
∑

i=1

uiRi(x, u)u (13)

with Ri(x, u) : Rn × Rm → Rn×m being a smooth map for 1 6 i 6 m.

Since a smooth nonlinear system of the form (1a) is equivalent to either system (12) or (13), we

will use them interchangeably when referring to a smooth nonlinear plant.

3 Main results

Lemma 1. Let Ω1 = {x ∈ Rn : Lf0(x)V (x) = 0}. Necessary conditions for system (1) to be

robust passivity with a C2 storage function V are that

1) Lf0
V (x) 6 −‖(LeV (x))‖‖n(x)‖, ∀x ∈ Rn;

2) Lg0V (x) = hT(x,0), ∀x ∈ Ω1;
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3)
n

∑

i=1

∂2fi

∂u2
(x,0) ·

∂V

∂xi

6
∂hT

∂u
(x,0) +

∂h

∂u
(x,0), ∀x ∈ Ω1

where fi(x, u) is the ith component of the vector function f (x, u).

Proof. Consider an auxiliary function F : Rn × Rm → R defined by

F (x, u) =
∂V

∂x
(f (x, u) + ∆f (x)) − h

T(x, u)u

Since system (1) is robust passivity, F (x, u) 6 0, ∀u ∈ Rm and for all admissible δ(x) ∈ Γ . When

u = 0, it leads to ∂V
∂x

(f (x,0) + ∆f (x)) 6 0. Using (2), we have the following inequality

∂V

∂x
f (x,0) 6 −

∂V

∂x
e(x)δ(x) (14)

In view of the symmetry of the set Γ , 1) follows immediately from (14).

We can deduce F (x,0) = Lf0 + ∆fV (x) ≡ 0 from 1) and 0 = Lf0V (x) for ∀x ∈ Ω1. Since system

(1) is passive, F (x, u) 6 0 ≡ F (x,0) for ∀x ∈ Ω1, u ∈ Rm. In view of (6) and (7), 2) and 3) follow

immediately.

Theorem 1. Consider a robust passive system of the form (1) with a C1 storage function V ,

which is positive definite. Suppose (1) is locally zero-state detectable. Let s : Rm → Rm be a smooth

function such that s(0) = 0 and yTs(y) > 0 for each nonzero y. The control law

u = −s(y) (15)

asymptotically stabilizes the equilibrium x = 0. If (1) is zero-state detectable and V is proper, the

control law (15) globally asymptotically stabilizes the equilibrium x = 0.

The proof of this theorem is exactly similar to that of Theorem 3.2 given in [1], so it is omitted.

Now a question arises immediately: when is the robust passive system (1) zero-state detectable?

To begin with, let

Ω̂ =
⋃

x0 ∈ N ⊆ Rn

($-limit set of φ(t,x0; 0)), Ω2 = {x ∈ R
n : Lf0V (x) = −‖LeV (x)‖‖n(x)‖}

where φ(t, x0;0) is the trajectory of ẋ = f 0(x) + ∆f (x) with x0 ∈ N .

Theorem 2. Consider the robust passive system of the form (1) with a Cr(r > 1) storage function

V (x), which is positive definite and proper. Suppose Ω2 = Ω1. Then system (1) is zero-state detectable

if Ω̂ ∩S = {0}. In the local case, the conclusion remains valid without the hypothesis that V is proper.

Proof. Let x(t) = φ(t,x0;0) be the trajectory of the unforced dynamic system ẋ = f 0(x)+∆f (x)

of (1a) starting from x0 ∈ Rn. Since system (1) is robust passive with a C2 storage function V ,

Lf0 + ∆fV (x) 6 0, for all admissible ∆f (x). Let r0 be its $-limit set. By [8], r0 is nonempty,

compact and invariant. Since V (x(t)) is positive definite and nonincreasing along the trajectory x(t) =

φ(t,x0;0), lim
t→∞

V (x(t)) exists. Let lim
t→∞

V (x(t)) = c > 0. By continuity of V , V (x̄) = c for every point

x̄ = lim
t→∞

φ(t, x0; 0) ∈ r
0.

Let φ(t, x̄;0) be the corresponding trajectory of ẋ = f 0(x) + ∆f (x) starting from x̄ ∈ r0 ⊆ Ω̂ .

φ(t, x̄;0) ∈ r0 ⊆ Ω̂ by the invariance. It follows that V (φ(t, x̄;0)) = V (x̄) = c, ∀t > 0. Hence

V̇ (φ(t, x̄;0)) = Lf0 + ∆fV (φ(t, x̄;0)) = 0, ∀t > 0. By 1) in Lemma 1, it holds that φ(t, x̄0;0) ∈ Ω2.

By assumption of Ω1 = Ω2, it follows that Ω̂ ⊆ Ω1 ⊆ Ω .

Let x̄(t) = φ(t, x̄0; 0) be a trajectory of ẋ = f 0(x) + ∆f (x) yielding y(t) = h(x̄(t),0) = 0,

∀t > 0. From the above, we get ∀φ(t, x̄0;0) ∈ r0 ⊆ Ω̂ ⊆ Ω1, then for any t > 0,

Lf0
V (x̄(t)) = Lf0

V (φ(t, x̄0;0)) = 0 (16)

In addition, since x̄ = φ(t, x̄0;0) ∈ Ω1, from 2) in Lemma 1

Lg0V (x̄(t)) = h
T(x̄(t),0) = 0, ∀t > 0 (17)

From (16) and (17) we deduce that for any τ = [f 0, g0] ∈ D,

Lτ V (x̄(t)) = Lf0
Lg0V (x̄(t)) − Lg0Lf0

V (x̄(t)) = 0, ∀t > 0
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Using the inductive argument, it can be shown that for any t > 0,

L
k
f0

LτV (x̄(t)) = 0, ∀τ ∈ D, 0 6 k 6 r − 1 (18)

Using (18), we conclude that x̄(t) ∈ S. Hence x̄(t) ∈ Ω̂ ∩ S. If Ω̂ ∩ S = {0}, then x̄(t) = 0.

Thus V (x̄(t)) = 0. In addition, since V (x) is positive definite with V (0) = 0, lim
t→∞

φ(t,x0;0) = 0. By

Definition 2, system (1) is zero-state detectable. In the local case, the conclusion remains valid without

the hypothesis that V is proper. �

As a consequence of Theorem 2, we have (Ω̂ ⊆ Ω) the following corollary.

Corollary 1. Consider the robust passive system of the form (1) is zero-state detectable if

Ω2 = Ω1 and Ω ∩ S = {0}.

To present sufficient conditions for a class of nonlinear systems with structural uncertainty to be

locally (globally) asymptotically stabilized, we make the following assumption. It is weaker than the

hypothesis that system (1) is robust passive.

Assumption 1. There exists a Cr(r > 1) function V : Rn → R+, V (0) = 0 which is positive

definite and defined on some neighborhood N of x = 0 such that

Lf(x, 0)V (x) 6 −‖LeV (x)‖‖n(x)‖, ∀x ∈ N (19)

Theorem 3. Suppose the nonlinear system (1a) satisfies Assumption 1, and S ∩ Ω = {0},

Ω1 = Ω2. Then (1a) is locally asymptotically stabilized at the equilibrium x = 0 by a smooth state

feedback. In particular, a local smooth state feedback control law u = α(x), u(0) = 0 can be solved

uniquely from the equation

u + (Lg(x,u)V (x))T = u +

(

∂V

∂x
g(x, u)

)T

= 0, u(0) = 0 (20)

where g(x, u) is defined by (11). If V is proper, and N = Rn, S ∩ Ω = {0}, Ω1 = Ω2, and (20) has a

solution well-defined on Rn, then (1a) is globally asymptotically stabilized by u = α(x).

Proof. Since system (12) satisfies Assumption 1 it is easy to obtain that

V̇ = Lf0 + ∆fV (x) + (Lg(x, u)V (x))u 6 (Lg(x, u)V (x))u (21)

Choose a dummy output

y = (Lg(x, u)V (x))T (22)

The input-output system (12)∼(22) is robust passive. Moreover, since S ∩ Ω = {0} and Ω1 = Ω2,

it follows from Corollary 1 that the robust passive system (12)∼(22) is locally zero-state detectable.

By Theorem 1, the output feedback control law u = −y = −(Lg(x, u)V (x))T locally asymptotically

stabilizes the equilibrium x = 0 of system (12)∼(22). In turn, it is implied that u = α(x) locally

asymptotically stabilizes the equilibrium x = 0 of the nonlinear system (12) or (1a), provided that

there exists a C1 solution u = α(x) with α(0) = 0, locally defined on a neighborhood of x = 0, such

that (20) is satisfied. If V is proper, and for any x ∈ Rn, S ∩ Ω = {0}, Ω1 = Ω2 and (20) is globally

solvable, then Theorem 3 also holds globally.

4 Example

Consider a nonlinear system with structural uncertainty

ẋ1 = x2 − 2x1e
x2
2 + (x1 − x

2
2)δ(x) + x

2
2u, ẋ2 = −x1 + x1x2δ(x) + x1u

3
, ‖δ(x)‖ 6 e

x2
2 (23)

Choose V (x) = 1
2(x2

1 + x2
2), ‖n(x)‖ = ex2

2 . Then Lf0
V (x) = −2x2

1e
x2
2 , LeV (x) = x2

1, Lf0
V (x) 6

−‖LeV (x)‖‖n(x)‖, Ω1 = {x ∈ R2 : x1 = 0}, Ω2 = {x ∈ R2 : Lf0
V (x) = −‖LeV (x)‖‖n(x)‖} = {x ∈

R2 : x1 = 0}. So Ω1 = Ω2. It is easy to verify that the other conditions of Theorem 3 hold. In view of

u + x1x
2
2 + x1x2u

2 = 0, and u(0) = 0, then the control

u =
−1 +

√

1 − 4x2
1x

3
2

2x1x2
(24)

locally asymptotically stabilizes the equilibrium x = 0. Fig. 1 shows the states x1(t) and x2(t) under

the state feedback (24) and the control u for the initial state x(0) = (0.6 0.7)T and δ(x) = ex2
2 sin x1.

For any initial state in the neighborhood of x = 0, it has the same simulation result.
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Fig. 1 The state x(t) and the control u(t) of the closed system

5 Conclusions

This paper deals with the general nonlinear system with structural uncertainty. Necessary condi-

tions for it to be robust passivity are derived. From these necessary conditions, sufficient conditions of

zero state detectability are deduced. Based on passive systems theory and the technique of feedback

equivalence, sufficient conditions for it to be locally (globally) asymptotically stabilized via smooth state

feedback are developed. A smooth state feedback control law can be constructed explicitly. Simulation

example shows the effectiveness of the method.
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