
Vol. 31, No. 6 ACTA AUTOMATICA SINICA November, 2005
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Abstract The research of robot localization aims at accuracy, simplicity and robustness. This
article improves the performance of particle filters in robot localization via the utilization of novel
adaptive technique. The proposed algorithm introduces probability retracing to initialize particle
sets, uses consecutive window filtering to update particle sets, and refreshes the size of particle set
according to the estimation state. Extensive simulations show that the proposed algorithm is much
more effective than the traditional particle filters. The proposed algorithm successfully solves the
nonlinear, non-Gaussian state estimation problem of robot localization.
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1 Introduction

The research of mobile robot navigation is mainly divided into four interrelated areas: map build-
ing, self-localization, path planning, and obstacle avoidance. Robot self-localization is one of the key
problems[1]. The robot collects noisy sensor measurements during the movement to localize itself in a
known environment. Robot self-localization is a procedure of fusion of inaccurate information generated
from multi-sensors. It is also an on-line state estimation problem of nonlinear, non-Gaussian processes.
Most successful methods of robot self-localization are the variants of Bayesian filters[2,3], where the
robot state (including its location and motion) is represented by the posterior probability distribution
over the map space.

Based on Markov hypothesis, particle filters are sequential Monte Carlo methods[4∼6] that repre-
sent the posterior probability distribution by a set of random samples which are updated by the method
of sequential importance sampling with resampling (SISR). Particle filters are the efficient tools to es-
timate the various unknowns for dynamic systems, even for the nonlinear, non-Gaussian time-varying
systems. So particle filters suit for the problem of robot localization – an nonlinear, non-Gaussian
Bayesian state estimation problem, where the traditional methods such as Kalman filters[7∼9] are not
effective.

Thrun et al. presented Monte Carlo localization, the simple particle filters in robot localization[10] .
Fox used the Kullback-Leibler distance (KLD) to measure the approximation error introduced by the
sample-based representation of the particle filter, and reduces the computational complexity[11]. Kwok
et al. introduced real-time particle filters to make full use of observations by distributing the samples
among the different observations during a filter update[12], and then enhanced real-time particle filters
by adapting the size of the mixture using KLD sampling[13]. In order to make more efficient trade-off
between accuracy, simplification and robustness, in this paper we introduce probability retracing to
initialize particle sets, use consecutive window filtering to update particle sets, and refresh the particle
set size according to the estimation efficiency.

The rest of the paper is organized as follows: in section 2 we first outline the traditional particle
filters and the available technologies to improve its performance; then in section 3, the details about the
proposed method are described and investigated. The simulation experiments are depicted in section 4
and the conclusion is drawn in the last section.

2 The particle filtering algorithms

In robot localization, the posterior probability density function (PDF) of robot state (including
the robot location and its motion velocity) is:

B(xt) = p(xt|zt, ut−1, zt−1, ut−2, zt−2, · · · , u0, z0) (1)
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where xt is the robot state at time t, ut−1 is the movement measure by the odometer during the interval
[t−1, t], and zt is the observation of sensors at time t. Based on the Markov hypothesis, the PDF could
be recursively updated according to the Bayesian rules, i.e.,

B(xt) ∝ p(zt|xt)

∫

p(xt|xt−1, ut−1)B(xt−1)dxt−1 (2)

as is shown in Fig. 1.

Fig. 1 Updating scheme of basic particle filters

Particle filters represent B(xt) with weighted sample sets SN
t = {< xi

t, w
i
t > |i = 0, 1, 2, · · · , N} (x

is the state estimation, w is the corresponding weight, and the weighted samples < X, w > are named
particles). The particle sets are updated using the method of SISR. Details of this algorithm are the
followings.

1) Importance sampling: draw samples from SN
t−1 according to the weights of particles; the com-

bination of such samples X ′ is coincidental to B(xt−1), which is the posterior PDF of the past time.
2) Movement updating: according to the move model p(x′|x, u), update the samples in X ′ by the

measured movement ut−1 and get the new samples set X.
3) Particle weighting: based on Bayesian rules, weight each sample xi

t in X by observation model
wi

t = p(zt|x
i
t) and the observation data zt.

Recursively calculating the above three steps generates the basic particle filters in robot local-
ization, which may estimate the robot states on-the-fly. Further more, from the algorithm, one sees
that particle filters do not specify the types of movement model or observation model, or the shape of
environment maps. Therefore, particle filters are capable of solving the problem of robot localization.
The accuracy and robustness of particle filters are closely related with the dimension of particle state
and the size of particle sets. Unluckily, the computational complexity is proportional to the size of par-
ticle sets and increases exponentially with the dimension of particles state. Consequently, the focused
improvement to particle filters is seeking for more efficient trade-off between accuracy, simplification
and robustness of the particle filtering algorithms. Some available modifications are listed as follows.

A. Discarding sensor data

The idea of discarding the sensor data is to initialize the proper dimension of particles and enlarge
the size of particle sets to get the off-line optimization of the estimation performance. Then during
the real time running, one can update the particle filter as often as possible and discard the sensor
data that could not be processed timely. Because this method will not make full use of the information
collected by the robot on-the-fly, the accuracy and robustness of localization are not acceptable.

B. KLD sampling

One can make use of Kullback-Leibler distance to update the necessary particle size in a certain
error bound between the sample-based maximum likelihood estimate and the current approximation of
the true posterior[11] . Therefore, KLD sampling achieves improvement of real time performance while
maintaining the localization accuracy of particle filter in robot localization. However, this method only
meets the real-time requirements partially with the adaptive size of particles.

C. Real time particle filters
Kwok et al. distributes the samples among the different observation arrivals during a filter

update[12]. Fig. 2 illustrates this approach. Several particle sets, named particle sets window, are
maintained during the procedure, and they are combined as integrity to update the sample set by the
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sensor observations. This approach can realize the aim of real time while using all the observation data.
However, the robustness is not satisfactory. As shown in Fig. 2 the particle sets windows are discrete,
and the updating of particle sets does not make full use of the known information. For example, the
information of set St1 is not used when updating the particle set St2 .

Fig. 2 Update scheme of real time particle filters

3 Novel adaptive particle filters

In particle filters, the difference between the estimation of the robot state presented by particle
sets and the actual robot state is named the system uncertainty. The system uncertainty comes from
tow aspects: the first is the uncertainty of the initial state of robot, and the second is the model
error and the noise of sensor measures. During each iteration, particle filter uses the noised sensor
measures to update the particle sets. Therefore it is required that the iteration should maintain the
efficient estimation information in the previous particle sets while trying best to draw information from
the noised sensor measures. Accuracy, simplification and robustness are considered by the following
method of consecutive window particle filters.

A. Probability retracing

In particle filters, the un-normalized weight w is the probability that the actual state is at the
sample. Usually the PDF of robot states is of generalized Gaussian distribution. So the more accurate
the estimation sample is, the bigger the corresponding weight w is. Consequently, w indicates the
efficiency of the estimation sample. At the same time, the average un-normalized weight W̄ of all
samples in one particle set SN can be used to measure the efficiency of this particle set, which is named
particle set efficiency. The bigger the particle set efficiency W̄ is, the more accurate the state estimation
of this particle set is.

This paper introduces probability retrieval to generate the initial particle set with big particle set
efficiency. Let the robot be away from the obstacle L in the direction θ; then the obstacle will arrive
at the robot by retracing L along the direction −θ. For the observations are always with noise, the
position that the obstacle retraces to is the probability estimation about the robot state. In practice,
the obstacle retraces according to the observation models that generate the distribution of estimation
states, which is named probability retracing. In a deterministic environment, probability retracing only
rests on the observation at that time, and the more accurate the sensors are, the more efficient the
probability retracing is. So we could use probability retracing to generate the initial particle set with
high particle set efficiency. The procedure of this algorithm is as follows:

1) Find the direction of the initial robot direction in the map by the line-matching method in [14].

2) In the map, represent obvious edges of the obstacle along the observation direction θ with
discrete sample set Xθ.

3) Retrace the samples in Xθ along the direction −θ to generate new sample set X ′
θ .

4) Repeat steps 2) and 3), and retrace all the obvious obstacle edges along all observation directions
to get sample set X ′ =

⋃

θ X ′
θ .

5) Weight the samples in X ′ by the method of K-D tree[15] and generate the initial particle set
S0.

The initial particle set generated by probability retracing has high particle set efficiency. At the
same time, the initialization procedure need not to be operated in real time, so the probability retracing
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will not influence the real-time performance.
B. Consecutive window filtering
In the basic particle filters, the importance sampling is just applied to the particle set SN

t−1, which
means that the state estimation at next time only bases on the current estimation, other than any of
the previous estimations. This is a first order Markov process, as shown in Fig. 1.

For the movement model and the sensor model are not accurate, and in reality the next state
estimation is related to the previous estimations, one can update the estimation according to multi-
estimation. The proposed consecutive window filtering is illustrated in Fig. 3.

Fig. 3 Updating scheme of consecutive window filtering

In Fig. 3, the importance sampling of particle set is based on the past k times′ estimations

B(xt) ∝
k

∑

i=1

αip(zt|xt)

∫

· · ·

∫

B(xt−i)
t

∏

j=t−i+1

p(xj|xj−1, uj−1)dxt−i+1 · · ·dxt−1 (3)

The past k times′ particle sets are combined to a particle set window. The relative weights of the
particle sets in the particle set window are denoted as α = [α1, α2, · · · , αk], which is the normalized
particle set efficiencies

α = [α1, α2, · · · , αk] = [W̄t−1, W̄t−2, · · · , W̄t−k]
/

t−k
∑

i=t−1

W̄i (4)

Compared to the real time particle filters, the particle set SN
t in consecutive window filtering at time

t derives from the window of particle sets, which includes particle sets SN
t−k, SN

t−k+1, · · · , S
N
t−1, other

than the particle sets SN
bt/kc×k−k, SN

bt/kc×k−k+1, · · · , S
N
bt/kc×k−1. Since the particle sets used to update

in consecutive window filtering are latter than those in real time particle filters, consecutive window
filtering is more efficient and more robust than real time particle filters.

C. Adaptive particle set size
In order to improve the efficiency of the algorithm further, KLD sampling for reference is used to

update the particle set size. In KLD sampling, one divides the map into small grids. In the thresholds
ε and δ, one calculates the next particle set size according to the numbers of grids b, which is held by
the current particle set

N =
b − 1

2ε

{

1 −
2

9(b − 1)
+

√

2

9(b − 1)
z1−δ

}3

(5)

In consecutive window filtering, one calculates N in each particle set. Then according to the particle
set efficiencies, one makes use of the weighted sum of N as the next particle set size, which is

Nt+1 =

k−1
∑

i=0

αi
bt−i − 1

2ε

{

1 −
2

9(bt−i − 1)
+

√

2

9(bt−i − 1)
z1−δ

}3

(6)

where bt−i is the number of grids held by particle set St−i in the map.
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The combination of probability retracing, consecutive window filtering and the adaptive particle
set size forms the novel adaptive particle filters, whose procedure is listed as follows,

1) Employ probability retracing to generate the initial particle set S0;

2) Update particle filters using equation (3) to get the current particle set St, and calculate the
corresponding particle set efficiency W̄0;

3) Based on equation (6), calculate the next particle set size Nt+1;

4) t = t + 1, and go back to 2).

4 Experiment results

The computer to do experiments has a PIII800 CPU and 256M memory. The map of the tested
office room is illustrated by a 600×400 bitmap, and each pixel denotes the space of 3cm×3cm. The
grid in the map is 5×5, which denotes a 15cm×15cm space in the office room. The sensor data and
the movement measures are collected by the robot with one odometer and four sonar sensors. Both
the odometer model and the sonar sensor model agree with [16]. In the experiments, the number of
particles updated in each iterative is named the valid updating particle number.

When the valid updating particle numbers of different algorithms are identical, the proposed
novel adaptive particle filter (APF) is compared with the basic particle filter (MCL), and the other
improved particle filters: KLD sampling, real time particle filters (RTPF). From Fig. 4, one can see
that when the valid updating particle number is not too large, the proposed particle filters consume
lest time and the real time performance is the best. However, when the valid particle number arises
to some large threshold (10E5 for example), KLD sampling outperforms the proposed particle filters.
The improvement by consecutive window filtering is not prominent compared to that from the adaptive
particle set size.

Fig. 4 Time consumption of each iterative in different particle filters

The robustness performance between the novel adaptive particle filters and the basic particle filters
is compared in Fig. 5. For the proposed particle filters employ probability retracing to generate the

Fig. 5 The comparison of robustness between the novel adaptive particle filters and the basic particle filters
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initial particle set, in the left end of the curves, its estimated error is lower than the basic particle
filters. The result means that the proposed particle filters can achieve accurate initial location. One
can also see that the robustness performance of the novel particle filters is excellent compared to the
basic particle filters.

The above experiments demonstrate that the proposed adaptive particle filters can improve the
robustness and reduce the computational complexity in robot localization compared with the basic
particle filters and other improvement methods, and can successfully solve the nonlinear, non-Gaussian
state estimation problem of robot localization.

5 Conclusion

In this article, we propose the adaptive particle filters, which employ the technologies including
probability retracing, consecutive window filtering, and adaptive particle set size. The novel method
makes good trade-off among the accuracy, simplification and robustness performance of particle filters.
Computer simulations demonstrate that the proposed method can successfully solve the nonlinear,
non-Gaussian state estimation problem of robot localization.
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