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Abstract An approach to identify interpretable fuzzy models from data is proposed. Interpretabil-
ity, which is one of the most important features of fuzzy models, is analyzed first. The number of
fuzzy rules is determined by fuzzy cluster validity indices. A modified fuzzy clustering algorithm,
combined with the least square method, is used to identify the initial fuzzy model. An orthogonal
least square algorithm and a method of merging similar fuzzy sets are then used to remove the re-
dundancy of the fuzzy model and improve its interpretability. Next, in order to attain high accuracy,
while preserving interpretability, a constrained Levenberg-Marquardt method is utilized to optimize
the precision of the fuzzy model. Finally, the proposed approach is applied to a PH neutralization
process, and the results show its validity.
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1 Introduction

During the past few years, fuzzy modeling techniques have attracted research interest due to their
successful applications in areas such as classification, data mining, pattern recognition, simulation,
prediction, and control. Compared to traditional mathematical models and pure neural networks, fuzzy
models possess some distinct advantages, including the facility for explicit knowledge representation in
the form of if-then rules, and the ability to approximate complicated nonlinear functions with simple
models.

Several fuzzy modeling methods have been proposed, including fuzzy clustering-based algorithms[1],
neuro-fuzzy systems[2,3] and genetic rules generation[4,5]. However all these methods only focus on fitting
data with the highest possible accuracy, neglecting the interpretability of the obtained fuzzy models,
which is a primary advantage of fuzzy systems and the most prominent feature that distinguishes fuzzy
systems from many other models[6].

In order to improve interpretability of fuzzy models, some methods have been developed. Roubos et

al.
[7∼11] stated several necessary conditions for interpretability. Angelov et al.

[12∼18] proposed detailed
techniques to improve interpretability of fuzzy models, including the method of merging similar fuzzy
sets, rule reduction by orthogonal least-square methods and genetic algorithms, global learning and
local learning. Roubos et al.

[7] obtained an initial redundant fuzzy model by fuzzy clustering, and
adopted the method of merging similar fuzzy sets and genetic algorithms to reduce the initial fuzzy
model iteratively, and finally used genetic algorithms to optimize all parameters of the fuzzy model.
Xing et al.

[19] proposed an approach to identify accurate and interpretable fuzzy models by input
variables selection and model selection. Min et al.

[20] identified an initial fuzzy model by fuzzy clustering
algorithm and fuzzy partition validity indices, and simplified the fuzzy model by similarity measure.
Delgado et al.

[21] presented fuzzy modeling as a multi-objective decision-making problem, considering
accuracy, interpretability and autonomy as goals. All these goals were handled via a single-objective
ε–constrained decision making problem, which was solved by a hierarchical evolutionary algorithm.

This paper proposes a systematic technique to construct interpretable and accurate fuzzy models.
First, interpretability issues in fuzzy models are analyzed. Secondly fuzzy cluster validity indices are
adopted to determine the number of fuzzy rules. A modified fuzzy clustering algorithm, combined with
a least square method, is used to identify the initial fuzzy model. Then an orthogonal least-square
algorithm and the method of merging similar fuzzy sets are used to remove redundancy of the fuzzy
model and improve its interpretability. Finally, a constrained Levenberg-Marquardt method is utilized
to optimize the fuzzy model and improve its precision. The proposed approach is applied to a PH
neutralization process, and the results show its validity.
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2 Preliminaries

2.1 Takagi-Sugeno fuzzy model

The typical fuzzy rule of the Takagi-Sugeno (TS) fuzzy model[22] has the form:

Ri : IF x1 is Ai,1 and · · · and xp is Ai,p

THEN yi = ai0 + ai1x1 + · · · + aipxp (1)

where xj is the j-th input variable, Aij is the fuzzy set of the j-th input variable in the i-th rule, yi are
output of the i-th fuzzy rule.

The output of the TS fuzzy model is computed using the normalized fuzzy mean formula:

y(k) =
c

∑

i=1

pi(x)ŷi (2)

where c is the number of rules, and Pi is the normalized firing strength of the i-th rule:

Pi(x) =

p
∏

j=1

Aij(xj)

c
∑

i=1

p
∏

j=1

Aij(xj)

(3)

Given N input-output data pairs {xk, yk}, the model in (2) can be written as a linear regression
problem

y = P θ + e (4)

where θ is the consequent matrix of rules, and e is the approximation error matrix.
Gaussian membership function is used to represent the fuzzy set Aij

Aij(xj) = exp

(

−
1

2

(xj − vij)
2

σ2
ij

)

(5)

where vij and σij represent the center and the variance of the Gaussian function respectively.
2.2 Interpretability issues in fuzzy models

Interpretability refers to the ability of the fuzzy model to express the behavior of a system in a
human understandable way. This is a subjective property that depends on several factors. Although
there is no formal definition for interpretability, several characteristics are believed to be essential.
These are described as follows[7∼11] :

1) The number of variables: a high-dimensional fuzzy model is difficult to interpret. The model
should use as few variables as possible.

2) The number of rules: a fuzzy model with a large rule base is less interpretable than a fuzzy
system containing few rules. Experientially, the number of fuzzy rules of an interpretable model is no
more than ten, which is determined by the limit of human intelligence.

3) Completeness, consistency and compactness of fuzzy rules: for each effective input variable
combination, there must be at least one fuzzy rule being fired, i.e., fuzzy rules cover the whole input
space. The fuzzy rules in the rule base should be consistent. If there are rules that are contradictory
to one another, it is hard to understand the fuzzy rules. There must be no rule whose antecedent is a
subset of another rule, and no rule may appear more than once in the rule base.

4) Characteristics of membership functions: convexity and normality are the two principle char-
acteristics which are satisfied naturally for most widely-used membership functions, e.g., the Gaussian
function, and the triangle function. The fuzzy partition of all input variables should be complete to
prevent unpredictable system outputs. Fuzzy sets should be distinguishable in order to assign linguistic
terms to the fuzzy sets. Usually, a minimum/maximum degree of overlapping between fuzzy sets must
be enforced.

3 Design of data-driven interpretable and accurate fuzzy model

3.1 Fuzzy cluster validation indices

It is essential to determine the number of rules, i.e., the number of fuzzy clusters. This can be
accomplished by validation analysis using fuzzy cluster validity indices.
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There are two categories of fuzzy cluster validity indices. The first category uses only the mem-
bership values of the fuzzy partition of data. The second one involves both the partition matrix and
the data itself.

The partition coefficient (PC) and the partition entropy coefficient (PE)[23∼25] are the typical
cluster validity indices of the first category.

PC(c) =
1

n

c
∑

i=1

N
∑

k=1

µ2
ik (6)

PE(c) = −
1

n

c
∑

i=1

N
∑

k=1

µik loga µik (7)

where PC(c) ∈ [1/c, 1], PE(c) ∈ [0, loga c]. With an increase of c, the values of PC and PE are
decreased/increased, respectively. The number corresponding to a significant knee is selected as the
optimal number of rules.

The above mentioned cluster validity indices are sensitive to fuzzy coefficient m. When m → 1,
the indices give the same values for all c. When m → ∞, both PC and PE exhibit significant knee at
c = 2.

The compactness and separation validity index proposed by Xie and Beni (XB)[26] is a represen-
tation of the second category. The smallest value of XB indicates the optimal clusters.

XB(c) =

c
∑

i=1

N
∑

k=1

µm
ik‖xk − vi‖

2

n · mini,k ‖vi − vk‖2
(8)

There are several other cluster validity indices, including fuzzy hyper volume (FHV ), average
partition density (PA), partition density index (PD), etc[27].

3.2 Modified Gath-Geva fuzzy clustering algorithm

Fuzzy clustering is a well-recognized technique to identify fuzzy models. The fuzzy C-means
algorithm[23] and the Gustafson-Kessel algorithm[28] are the widely-used methods in fuzzy modeling.
However, there are two main drawbacks for these algorithms. First, only clusters with approximately
equal volumes can be properly identified, which is frequently difficult to satisfy in real systems. Second,
clusters obtained are generally axes-oblique rather than axis-parallel; consequently, a decomposition
error is made in their projection onto the input variables. To circumvent these problems, a modified
Gath-Geva algorithm[29] is applied in this paper.

The objective function based on the minimization of the sum of weighted squared distances between
the data points and cluster centers is described in the following:

J(Z ; U , V ) =
c

∑

i=1

N
∑

k=1

(µik)mD2
ik (9)

where Z is the set of data, U = [µik] is the fuzzy partition matrix, V = [V 1, V 2, · · · , V c]
T is the set of

centers of the clusters, c is the number of clusters, N is the number of data, m is the fuzzy coefficient,
µik is the membership degree between the ith cluster and kth data, which satisfies conditions:

µik ∈ [0, 1];
C

∑

i=1

µik = 1 (10)

The Lagrange multiplier is used to optimize the objective function (9). The minimum of (U, V ) is
calculated as follows:

µik =
1

c
∑

j=1

(Dik/Djk)2/(m−1)

(11)
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vi =

N
∑

k=1

(µik)m
zk

N
∑

k=1

(µik)m

(12)

The variance of the Gaussian function is:

σ2
ij =

N
∑

k=1

µik(xjk − vjk)2

N
∑

k=1

µik

(13)

The norm of distance between the ith cluster and kth data is

1

D2
ik

=
n

∏

j=1

N
∑

k=1

µik

N
√

2πσ2
ij

exp(−
1

2

(xjk − vij)
2

σ2
ij

·
1

√

2πσ2
i

exp(−
(yk − ŷk)T(yk − ŷk)

2σ2
i

) (14)

Given the input variable X, output y and fuzzy partition matrix U as follows.

X =











XT
1

XT
2

...
XT

N











, y =











y1

y2

...
yN











, Ui =











µi1 0 · · · 0
0 µi2 · · · 0
...

...
. . .

...
0 0 · · · µiN











(15)

appending a unitary column to X gives the extended matrix Xe:

Xe = [X 1] (16)

Then

θi = [XT
e UiXe]X

T
e Uiy (17)

is the consequent parameter of the fuzzy model.

The procedure of constructing a fuzzy model based on the modified Gath-Geva fuzzy clustering
algorithm is summarized as follows:

1) Choose the number of fuzzy rules, the weighting exponent, and the stop criterion ε > 0.

2) Generate the matrix U randomly. U must satisfy condition (10).

3) Compute the parameters of the model using (12), (13) and (17).

4) Calculate the norm of distance utilizing (14).

5) Update the partition matrix U using (11).

6) Stop if ‖U (l) − U (l−1)‖ 6 ε, else go to 3).

3.3 Rule reduction based on the orthogonal least-square method

In the process of cluster validity analysis, it is possible that noise or abnormal data are clustered to
create redundant or incorrect fuzzy rules. This problem can be solved by rule reduction using orthogonal
transformation methods[30].

Orthogonal transformation methods assign importance to each rule to determine if it should be
retained or eliminated. The singular value decomposition (SVD) method and the orthogonal least square
(OLS) method are the most-applied orthogonal transformation techniques. In SVD, the estimation of
the effective rank of the firing matrix influences the importance, and different estimations lead to
different results. The OLS algorithm avoids this subjective error and is adopted in this paper.

The orthogonal least square method transforms the columns of the firing matrix into a set of
orthogonal basis vectors. Using the Gram-Schmidt orthogonalization procedure, the firing strength
matrix P is decomposed into

P = WA (18)
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where W is a matrix with orthogonal columns wi, and A is an upper triangular matrix with unity
diagonal elements.

Substituting (18) into (4) yields

y = WAθ + e = Wg + e (19)

where g = Aθ. Since the columns wi of W are orthogonal, the sum of squares of y(k) can be written
as

y
T
y =

M
∑

i=1

g2
i w

T
i wi + e

T
e (20)

Both sides of (20) are divided by N , and it can be seen that the part of the output variance yTy/N

explained by the regressors is
∑

giw
T
i wi/N , and an error reduction ratio due to an individual rule is

defined as

[err]i =
g2

i wT
i wi

yTy
, 1 6 i 6 c (21)

The ratio offers a simple means for seeking a subset of important rules in a forward-regression
manner. If it is decided that r rules are used to construct a fuzzy model, then the first r rules with the
largest error reduction ratios will be selected.

Without regarding to the premise structures, the OLS method may assign high importance to
the redundant fuzzy rules with high firing degrees. This is a drawback that can be solved by a simple
modification to the OLS. Each time a new rule is selected, its corresponding column vector is analyzed.
If the vector is a linear combination of the firing vectors corresponding to the previously selected rules,
then it should not be assigned high importance.

If the importance of the fuzzy rule is far less than other′s, and deletion of this rule dose not
deteriorates precision, then this fuzzy rule may be picked out to improve interpretability of the fuzzy
model.

3.4 Simplification of the fuzzy model by merging similar fuzzy sets

The simplified fuzzy model obtained above may contain redundant information in terms of simi-
larity between fuzzy sets. The similarity of fuzzy sets makes the fuzzy model uninterpretable, for it is
difficult to assign qualitatively meaningful labels to similar fuzzy sets. In order to acquire an effective
and interpretable fuzzy model, elimination of redundancy and simplification of the fuzzy model are
necessary.

There are three types of redundant or similar fuzzy sets in the fuzzy model: 1) a fuzzy set is
similar to the universal set, 2) a fuzzy set is similar to the singleton set, and 3) the fuzzy set A is similar
to the fuzzy set B.

If a fuzzy set is similar to the universal set or the singleton set, it should be removed from the
corresponding fuzzy rule antecedent. As for two similar fuzzy sets, a similarity measure is utilized to
determine if the fuzzy sets should be combined.

For fuzzy sets A and B, a set-theoretic operation based similarity measure[31] is defined as

S(A, B) =

m
∑

j=1

[µA(xj) ∧ µB(xj)]

m
∑

j=1

[µA(xj) ∨ µB(xj)]

(22)

where X = {xj |j = 1, 2, · · · , m} is the discrete universe, ∧ and ∨ are the minimum and maximum
operators respectively. S is a similarity measure in [0,1]. S = 1 means the compared fuzzy sets are
equal, while S = 0 indicates that there is no overlap between the fuzzy sets.

If similarity measure S(A, B) > τ , i.e., the fuzzy sets are very similar, then the two fuzzy sets A
and B should be merged to create a new fuzzy set C, where τ is a predefined threshold. It should be
pointed out that threshold τ influences the model performance significantly. A small threshold leads to
a fuzzy model with low accuracy and highly interpretability. In a general way, τ = [0.4− 0.7] is a good
choice.
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For the Gaussian type of fuzzy sets used in this paper, the parameters of newly merged fuzzy set
C from A and B are defined as

{

vc = (vA + vB)/2

σc =
√

σ2
A + σ2

B/2
(23)

The method of merging similar fuzzy sets is carried out iteratively. For each iteration, the similarity
measures between all pairs of fuzzy sets for each variable are calculated. The pair of highly similar fuzzy
sets with S > τ is merged to create a new fuzzy set. The rule base of the fuzzy model is updated by
substituting the new fuzzy set for the two highly similar fuzzy sets. This process continues until there
are no fuzzy sets for which S > τ . Then the fuzzy sets that have similarity to the universal set or the
singleton set are removed.
3.5 Optimization

After rule reduction and merge of similar fuzzy sets, the interpretability of the initial fuzzy model
is improved, while its precision is reduced. It is essential to optimize the reduced fuzzy model to improve
its precision, while preserving its interpretability.

The precision and parameters of the fuzzy model are strongly nonlinear, so a robust optimization
technique should be applied in order to assure a good convergence. The constraint Levenberg-Marquardt
(LM)[3] method is adopted in this paper. The premise parameters are limited to change in a range of
±α% around their initial values in order to preserve the distinguishability of the fuzzy sets. For the sake
of maintaining the local interpretability of the fuzzy model, the consequent parameters are restricted
to vary ±β% of the corresponding consequent parameters.

4 Example

PH neutralization[32] is a typical nonlinear system. We build interpretable and accurate fuzzy
models for PH neutralization using techniques developed in Section 3.

In order to determine the number of fuzzy rules, cluster validity indices including PC, PE, XB
and PA are adopted. Fig. 1 displays the results of the cluster validity indices. All the cluster validity
indices indicate that the optimal number of rules is three.

The modified Gath-Geva fuzzy clustering algorithm is used to construct a fuzzy model with three
fuzzy rules. The training error and validation error of the obtained fuzzy model are 0.3791 and 0.3160,
respectively, which are shown in Table 1. The fuzzy sets of membership functions are illustrated in
Fig. 2(b). The fuzzy sets are distinguishable, and it is easy to assign understandable linguistic term to
each fuzzy set. We can see that the obtained fuzzy model with three rules is interpretable.

Table 1 Comparison of different fuzzy models

Number of fuzzy rules Number of fuzzy sets Training error Validation error Validation error descend

2 2 1.6290 1.7547 –

2 4 0.4020 0.3433 411.13%

3 6 0.3791 0.3160 8.64%

4 8 0.3716 0.3119 1.31%

5 10 0.3739 0.3099 0.65%

The OLS method is adopted to pick out unnecessary fuzzy rules. The importance of the fuzzy
rules are [0.2249 0.0250 0.7438] respectively, where the importance of the second fuzzy rule is far less
than the others. Without considering precision, the second fuzzy rule can be deleted. Fig. 2(a) displays
the fuzzy sets of membership with two rules. Table 1 gives the training and validation errors of the
fuzzy model with two rules, which are 0.4020 and 0.3433, respectively.

The method of merging similar fuzzy sets is carried out for the reduced fuzzy model with two rules
sequentially. The similarity measure between fuzzy sets of flow rate is 0.3420, and the measure between
fuzzy sets of PH is 0.0943. Without considering precision and reality, the fuzzy sets of flow rate can
be merged to a new fuzzy set. After similar fuzzy sets are merged, the training error and validation
errors of the model are 1.6290 and 1.7547, respectively. The fuzzy sets of flow rate cannot be merged
because precision deteriorates, so the model with two fuzzy rules and without merge of similar fuzzy
sets is adopted in this paper.
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Fig. 1 Cluster validity indices

(a) (b)

(c) (d)

Fig. 2 Fuzzy sets of different fuzzy models
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In order to illustrate interpretability and precision of different fuzzy models, Fig. 2 displays fuzzy
sets of models with 2, 3, 4 and 5 fuzzy rules, and Table 1 shows the corresponding errors and number
of rules/fuzzy sets.

With the increase of rules, the precision is improved, while the interpretability is reduced. When
the number of rules is 4 and 5, the fuzzy sets are heavy overlapped, while the precision is only increased
a little.

The fuzzy model is optimized by the constrained Levenberg-Marquardt method. The constraint
of antecedent parameters is 5%, and the constraint of consequent parameters is 15%. The optimized
model is

R1 : If FR(k) is High and PH(k) is High

Then PH(k + 1) = 0.0321FR(k) + 0.8614PH(k) + 0.6659 (24)

R2 : If FR(k) is Low and PH(k) is Low

Then PH(k + 1) = 0.1103FR(k) + 0.7521PH(k) + 0.2614

where FR(k) is the value of flow rate, and PH(k) is the value of PH. Fig. 3(a) diagrams the fuzzy sets
of the model.

After optimization, the training error and validation error of the model are 0.3711 and 0.3088
respectively. Without decreasing interpretability, the precision of the model is improved. Fig. 3(b)
illustrates the comparison of model outputs and measured outputs.

(a) (b)

Fig. 3 Fuzzy sets of the model and comparison of model output and measured output

Table 2 compares the fuzzy model, neural network[33] and linear regression model[34]. The linear
regression model owns the highest interpretability and the worst precision. The neural network has
no interpretability, but has the best precision. The fuzzy model has acceptable interpretability and
precision.

Table 2 Comparison of different types of models

Type Training error Validation error Interpretability

Linear regression model 0.4883 0.3701 High

Fuzzy model 0.3711 0.3088 Medium

Neural network 0.3043 0.2796 None

5 Conclusion

This paper studies a case of interpretable fuzzy modeling. Preliminaries, including the TS fuzzy
model and the interpretability issues, are stated first. Then a novel fuzzy modeling technique is pro-
posed: a modified fuzzy clustering algorithm is used to build an initial fuzzy model, and an orthogonal
least-square method and the method of merging similar fuzzy sets are carried out to reduce the fuzzy
model and improve its interpretability. Finally, a constrained Levenberg-Marquardt method is adopted
to optimize the fuzzy model and improve its precision. The simulation results on PH neutralization
illustrate validity of the method.
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intelligent control and intelligent system, nonlinear control theory and application, and digital AC servo system.

QIN Yong Associate professor at Beijing Jiaotong University. His research interests include fuzzy control
and application, and intelligent transportation system.

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

2006 IEEE
World Congress on Computational Intelligence

A Joint Conference of the International Joint Conference on Neural Networks (IJCNN)
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

and IEEE Congress on Evolutionary Computation (CEC)

July 16-21, 2006
Sheraton Vancouver Wall Centre, Vancouver, BC, Canada

Call for Contributed Papers

IJCNN 2006 solicits papers from all topics in neural networks, including, but not limited to:
-supervised, unsupervised & reinforcement learning,
-neuroinformatics,
-computational neuroscience,
-neural dynamics & complex systems,
-connectionist cognitive science,
-neural optimization & dynamic programming,
-kernel methods,
-graphic models,
-embedded neural systems,
-autonomous mental development,
-neural control & cognitive robotics,
-hybrid intelligent systems,
-data analysis & pattern recognition,
-image & signal processing,
-hardware implementation, and
-real-world applications.

FUZZ-IEEE 2006 solicits papers from all topics in fuzzy systems, including, but notlimited to:
-fuzzy logics & fuzzy set theory,
-fuzzy-neuro-evolutionary hybrids,
-fuzzy optimization & design,
-fuzzy system architectures & hardware,
-fuzzy pattern recognition & image processing,
-fuzzy control & robotics,
-fuzzy data mining & forecasting,
-fuzzy information retrieval,
-fuzzy human interface,
-fuzzy internet & multimedia,
-fuzzy computing with words,
-granular computing, and
-real-world applications.
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