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Abstract Decentralized closed-loop identification and controller design for a kind of cascade pro-
cesses composed of several sub-processes are studied. There are only input couplings between adjacent
sub-processes. First, the cascade process is divided into several two-input two-output systems and
coupling models of adjacent sub-processes are obtained via decentralized identification. TITO sys-
tem is decoupled equivalently into four independent single open-loop processes with the same input
signal. Then, a distributed model predictive control algorithm is proposed based on the coupling
models of adjacent sub-processes.
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1 Introduction

In some industrial processes, the final product quality is influenced by the overall process, which is

made up of several sub-processes. Many researchers are interested in plant-wide control for large-scale

processes[1]. Decentralized structure is often used in plant-wide control. There are input couplings be-

tween each sub-process. It is necessary to obtain the coupling models in order to design the decentralized

controller.

In this paper, decentralized identification and distributed predictive control method for a kind of

cascade process is studied. Sub-processes of this kind of cascade processes are interconnected serially,

and there are only input couplings in adjacent sub-processes. There are a lot of such systems in chemical

industry engineering. A considerable number of identification methods and their application have been

reported[2]. The identification method is based on step test, which has the advantage of simple and

easy operation and is dominant in process control applications[3∼4] . Many researchers have done work

on predictive control and distributed predictive control in recent years[5∼7].

In this paper paper the cascade system is divided into several two-input two-output (TITO) sub-

processes. Decentralized close-loop identification method based on step test is proposed. Through

sequential step change of set points of each sub-process, the error signals are obtained and the overall

process is decoupled equivalently into several individual single open-loop processes and the parameters

of transfer function can be obtained. Then, distributed predictive controller is designed for each sub-

process considering the coupling models. Simulation study is given for a cascade system composed of

four sub-processes.

2 Description and structure analysis of the kind of cascade processes

The process under study is composed of several sub-processes which are serially interconnected.

Only the input couplings between adjacent sub-processes are considered and other couplings are weak

which are not considered. This kind of cascade system is shown in Fig. 1.

The output of sub-process i is:

yii(s) = Gi,i−1(s)ui−1(s) + Gii(s)ui(s) + Gi,i+1(s)ui+1(s), i = 1, · · · , n (1)

It is influenced by the input of the two adjacent sub-processes except for the input of sub-process i.

While designing distributed controller for each sub-process, the coupling between sub-processes should

be considered. So we need to obtain the coupling models between sub-processes. Because there are only

input couplings between adjacent sub-processes, the cascade system can be divided into several TITO
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systems for identification. The cascade process is divided into n − 1 two-input two-output (TITO)

sub-systems as shown in Fig. 1. The i-th TITO sub-system is made up of sub-process i and sub-process

i + 1, which can be shown as:

TITO process i : {subprocess i, subprocess i + 1}, i = 1, · · ·n − 1 (2)

We can identify the transfer function parameters for each TITO local system sequentially. In

detail, the coupling model between sub-process 1 and sub-process 2 will be obtained when the TITO

process 1 is identified, and the coupling model between sub-process 2 and sub-process 3 will be obtained

by identifying the TITO process 2. Thus, all the coupling models will sequentially be obtained.

Fig. 1 Structure of cascade process

3 Identification of cascade processes

For each TITO local system of the cascade process, a novel decentralized close-loop identification

method based on step test is adopted. The coupled close-loop TITO system is decoupled equivalently

into four individual single open-loop processes with the same input signal acting on the four transfer

functions through sequential step change of set points. The transfer function of first-order or second-

order plus dead time is used to describe the model of each single open-loop system and the parameters

can be identified using existing identification methods such as least squares method.

3.1 Signal testing procedure

Consider the piece-TITO sub-system under decentralized control, which is made up of sub-process

i and sub-process i + 1 as shown in Fig. 2, where ri, ei, yi, Ki, and Gij are set points, errors, process

outputs, controllers, and process transfer functions, respectively. Without loss of generality, it is further

assumed that the controller Ki is proportional type and the stability of the whole system should be

guaranteed. To simplify our derivation, the notations ri, ei, yi are used in both s and t domain. The

fundamental relationship between error signals and transfer function outputs for the sub-process are

described by

Fig. 2 Closed-loop TITO control system
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yi = GiiKiei + Gi,i+1Ki+1ei+1

yi+1 = Gi+1,iKiei + Gi+1,i+1Ki+1ei+1

ei = ri − yi

ei+1 = ri+1 − yi+1

(3)

Assume that the process initially rests at a steady state with initial set point, error and output variables

as r0
i , r0

i+1, y
0
i , y0

i+1, e
0
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i+1, respectively, with
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To identify the process parameters, the test involves the following steps:

1) Make a step change to ri, from r0
i to r1

i , with ri+1 being kept unchanged, and record the error

signals e1
i , e

1
i+1 for the two loops until the new steady state is reached at t

4

= t1 = T . The incremental

equation from state (4) to the new state becomes
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2) Make a step change to r0
i+1, from ri+1 to r1

i+1, while keeping ri = r1
i , and record the error

signals until the new state is reached. Again, the incremental equation from state (5)∼(8) to the new

state can be written as
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From (5) and (12), we obtain
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where L[·] is Laplace transform and � is dot product of vectors. In terms of parameter identification,

the coupled closed-loop TITO system has been decoupled into four individual single open-loop systems

with the same input signal acting on the four transfer functions. The relation between the original

system input/output and the decentralized identification system are given as below. The system input

for all of the four loops is

u = KiKi+1(e
1
i � e

2
i+1 − e

2
i � e

1
i+1) (17)

For the transfer function input given in (17), the output signals for the equivalent identification

systems are

yi,i = Ki+14r � e
2
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2
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2
i � e

1
i+1) (18)
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yi,i+1 = −Ki4ri � e
2
i (19)

yi+1,i = −Ki+14ri+1 � e
1
i+1 (20)

yi+1,i+1 = Ki4ri+1 � e
1
i − Ki(e

1
i � e

2
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2
i � e

1
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During the testing, step change for each set point is performed sequentially.

3.2 Model identification method

The first- or second-order plus dead-time models are often used to described most practical in-

dustrial processes. Least squares method is employed here to identify the multiple single equivalent

identification systems and the parameters in Gii(s), Gi+1,i, Gi,i+1 and Gi+1,i+1 can be obtained. The

data employed in the identification algorithm is the equivalent input and output signals in (17)∼(21).

In the identification for TITO i − 1 local system, the parameters of coupling models Gi,i−1(s) and

Gi−1,i(s) are obtained. So we obtain all the transfer function models in (1) for sub-process i. Repeat

the procedure for n − 1 TITO sub-system sequentially and model of the whole cascade system can be

obtained. The main advantages of the proposed identification method is that the testing procedure is

straightforward, the computation is simple and can be easily implemented. The parameters of first- or

second-order plus dead-time models for each transfer function can be directly obtained.

4 Predictive control algorithm for cascade processes

Distributed predictive algorithm is designed for each sub-process of the cascade system shown in

Fig. 1. For sub-process i, the predictive equation over a finite time horizon in the future is

yi,PM (k) = fi[yi,p0(k),4ui−1,M (k),4ui,M (k),4ui+1,M (k)], (i = 1, · · · , n) (22)

where

4ui,M (k) = [4ui(k|k) · · · 4ui(k + M − 1|k)]T

yi,PM (k) = [yi(k + 1|k) · · · yi(k + P |k)]T, (i = 1, · · · , n) (23)

Y i,p0(k) = [yi,0(k + 1|k) · · · yi,0(k + P |k)]T

P is predictive horizon; yi,PM (k) and yi,p0(k) are the predictive output of sub-process i and the initial

values of the predictive output; 4ui,M (k) is control increments for sub-process i over M control period

in the future; 4ui−1,M and 4ui+1,M (k) are the control increments of the two adjacent sub-processes

of sub-process i. The optimization objective for sub-process i is

Ji =

P
∑

j=1

Li[yi(k + 1|k),4ui,M (k)], i = 1, · · · , n (24)

At instant k, when solving the optimization problem of predictive control algorithm for sub-process i,

the control increments 4ui−1,M (k) and 4ui+1,M (k) at instant k of sub-process i − 1 and sub-process

i + 1 should be known. The coupling models between each sub-process have been obtained via TITO

identification method. They can be considered in solving the optimal control actions for sub-process i.

So we design the distributed predictive control structure as shown in Fig. 3.

Here, we assume that the controller of sub-process i can obtain the optimal control sequences of

its adjacent sub-processes and send its control sequences to other sub-processes by distributed com-

munication. The distributed information is used to compensate the couplings. This control structure

maintains the advantage of decentralized control in which each sub-process has its sub-controller and

the control parameters can be designed independently. At the same time, the coupling models are

considered which will improve the control performance of the whole cascade system. Here we consider

a local communication mode, which will be described as below. At time k, the controller of sub-process

i can obtain the optimal control sequences of its adjacent sub-processes at time k − 1.
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Fig. 3 Control structure of the cascade process

At instant k, when solving the optimization problem of predictive control algorithm for sub-process

i, 4ui−1,M (k) and 4ui+1,M (k) in (22), which are the optimal control sequences of sub-process i − 1

and sub-process i + 1 should be known:

4uj,M (k) = [4uj(k|k) · · · 4uj(k + M − 1|k)]T, j = i − 1, i + 1 (25)

The following optimal control sequences at time k − 1 of sub-process and i− 1 sub-process i + 1 can be

obtained via distributed communication:

4u
∗

j,M (k − 1) = [4u
∗

j (k − 1|k − 1) · · · 4u
∗

j (k + M − 2|k − 1)]T, j = i − 1, i + 1 (26)

Adopt the moving-window approach[7], let

4uj,M (k) = s4u
∗

j,M (k − 1), j = i − 1, i + 1 (27)

where

s =









0 1 0 0

· · · · · · · · · · · ·

0 0 · · · 1

0 0 · · · 1









(28)

Then the predictive equation of sub-process i can be written as

yi,PM (k) = fi[yi,p0(k), s4u
∗

i−1,M (k − 1),4ui,M (k), s4u
∗

i+1,M (k − 1)], (i = 1, · · · , n) (29)

The predictive control law for sub-process i can be described as (30), in which (29) is the predictive

equation and (24) is the performance index.

min Ji|4u
∗
i−1,M

(k − 1), 4u
∗
i+1,M

(k − 1)

s.t. yi,PM (k) = fi[yi,p0(k), s4u
∗

i−1,M (k − 1),4ui,M (k), s4u
∗

i+1,M (k − 1)] (30)

The predictive control algorithm based on distributed communication for cascade processes can

be described as follows:

Step 1. At sampling instant k, sub-process i sends out its optimal control sequence at time k− 1

4u∗

i,M (k − 1) to its two adjacent sub-processes and also receives, 4u∗

j,M (k − 1), j = i − 1, i + 1 from

the two adjacent sub-processes. Set 4uj,M (k) = s4u∗

j,M (k − 1), j = i − 1, i + 1.

Step 2. Solve the optimal control problem for each sub-process to obtain the optimal control

sequence 4u∗

i,M (k) at instant k.

Step 3. 4ui(k) = [1 0 · · · 0]4u∗

i,M (k), The first control in that sequence is applied to the

physical sub-process.

Step 4. Set k = k + 1, and return to Step 1 at the next sample time. Repeat the procedure.

In section 3, the transfer function model in (1) has been obtained for each sub-process. The

step response coefficients aij for each output yi to the input uj , j = i − 1, i, i + 1 have been got

by identification. Considering the dynamic matrix control (DMC) algorithm, for sub-process i, the

predictive equation is

yi,PM (k) = yi,P0(k) + Aii4ui,M (k) + Ai,i−1s4u
∗

i−1,M (k) + Ai,i+1s4u
∗

i+1,M (k − 1) (31)



340 ACTA AUTOMATICA SINICA Vol. 31

The optimization objective is

min Ji = ‖wi(k) − yi,P0(k)‖2
Qi

+ ‖4ui,M (k)‖2
Ri

(32)

The unconstrained predictive control law for sub-process i is

4ui,M (k) = (AT
iiQiAii + Ri)

−1
A

T
iiQi[w

∗

i (k) − yi,p0(k)] (33)

where

w
∗

i (k) = wi(k) − Ai,i−1s4u
∗

i−1,M (k − 1) − Ai,i+1s4u
∗

i+1,M (k − 1) (34)

The second and the third items in the right side of (34) are the feed-forward compensation for the

coupling between sub-process i and its two adjacent sub-processes. The control sequences of the two

adjacent sub-processes at time k−1 are obtained via distributed communication. The control algorithm

proposed in this paper will improve the control performance of the whole system greatly because the

couplings between sub-processes have been considered.

5 Simulation

We consider a cascade system, which consists of four sub-processes. The structure of the cascade

system is shown in Fig. 1. There are only input couplings in adjacent sub-processes. Simulation work has

been done based on the decentralized closed-loop identification method and the distributed predictive

control algorithm proposed in this paper. Assume the transfer function matrix of the cascade system is

G(s) =

















5e
−2s

50s + 1
3e

−4s

100s + 1 0 0

3e
−4s
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0 2e
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−4s

100s + 1

0 0 1.5e
−4s
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4e

−2s
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(35)

The whole cascade system is divided into three TITO local systems to be identified. In practice, the

real measurement of the process output under closed-loop test are inevitably corrupted by measurement

noise, which leads to the corruption of the constructed test signals. In our simulation, we assume the

output signals are measured under measurement noise and the noise-to-signal ratio (NSR) of the noise

is 20%[3∼4]. In order to show the accuracy of the identification results, we adopt the frequency domain

identification error index, i.e.,

E = max
ω

{
∣

∣

∣

∣

Ĝ(jω) − G(jω)

G(jω)

∣

∣

∣

∣

× 100%

}

(36)

where G(s) and Ĝ(s) are the actual and estimated process frequency responses, respectively.

The identified models and parameters under measurement noise are given in Table 1. It shows

that the frequency-domain characteristic of estimated model is close to that of actual process. The

simulation results show that the identification method is practical and accurate.

Table 1 Identification results (under 20% noise level)

Ĝ(s) E(%)

g11(s) = 4.798e
−1.98s

48.74s + 1 5.0511

g12(s) = 2.97e
−3.79s

99.825s + 1 10.347

g21(s) = 2.829e
−3.83s

94.25s + 1 8.6268

g22(s) = 5.757e
−1.8s

50.7s + 1 9.4779

g23(s) = 2.036e
−3.82s

205s + 1 9.1627

g32(s) = 2.044e
−3.75s

103.6s + 1 12.2991

g33(s) = 3.961e
−1.92s

50.34s + 1 3.3935

g34(s) = 2.012e
−3.81s

101.3s + 1 9.4214

g43(s) = 1.512e
−3.8s

101.6s + 1 9.8725

g44(s) = 3.941e
−1.99s

49.53s + 1 1.4715
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Then, the distributed predictive controller is designed for the cascade process. The optimization

objective for each sub-process is

Ji = ‖ri(k) − yi,PM (k)‖2
Qi

+ ‖4ui,M (k)‖2
Ri

(i = 1, · · · , 4) (37)

In the simulation case, the sampling time is 100 seconds and total simulation time is 400 seconds.

The expected output values for the four sub-processes are (0.5,1,2,3). At time t = 200, change the

expected output value for the forth sub-process from 3 to 1 while keeping other expected output values

un-changed. The simulation result is shown in Fig. 4, which shows that all the outputs of four sub-

processes track their expected values well. Then we compared the complete decentralized predictive

control algorithm in which the couplings models between sub-processes are not considered with our

distributed predictive control algorithm proposed in this paper. Fig. 5 shows the simulation result.

(Solid line: the output and control input of the third sub-process for the completed decentralized

predictive control algorithm, not considering the coupling models; Dashed line: the output and control

input of the third sub-process for the algorithm proposed in this paper). It shows that our control

algorithm in which the couplings between sub-processes have been compensated has improved the

control result greatly.

Fig. 4 Output and input of each sub-process

Fig. 5 Output and input of the third sub-process

6 Conclusion

Decentralized close-loop identification method and distributed predictive control for a kind of

cascade processes, which has only input couplings between adjacent sub-processes, are studied in this

paper. First, the cascade process is divided into several two-input two-output (TITO) systems sequen-

tially. Each TITO system is decoupled equivalently into four independent single open-loop processes

with the same input signal by transformation. Then, a distributed model predictive control algorithm

is proposed based on the coupling models of adjacent sub-processes. Controller of each sub-process can

obtain the optimal control sequences at the previous time instant from its adjacent sub-processes via

communication to feed-forward compensate the coupling effects. Simulation results show the effective-

ness of the identification and control algorithm.
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