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Abstract This paper addresses the problem of dynamic multiscale system (DMS) estimation. Re-
search achievements in the related area have been reported in the literature, but they either rely on
the assumption of stationarity of the observed process or are difficult to be implemented. In this
paper, a model of DMS that meets the requirements of the standard discrete time Kalman filtering
is built and is realized by general compactly supported wavelet. The introduction of the state space
projection equation and the augmentation of measurement equation are a major part of the novelty
in our work. A theorem on the optimal filtering output at each scale is put forward. Experimental
results are given to verify our methods′ superior performances.
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1 Introduction

The problem of estimating the state of a dynamic multiscale system (DMS) on the basis of available

noisy measurements arises in a variety of contexts, including remote sensing and geophysics. It is also

one of the well-known key problems in modern control theory.

A well-known achievement is the multiscale stochastic model that stems from the work of Willsky

et al and that allows the modeling of multiresolution data at different levels in the bintree[1,2]. This

model has made success in a number of applications[3∼13] . Motivated by the success of this methodology

in solving static estimation problems, a dynamic algorithm was proposed by propagating the static

estimator over time with alternating update and prediction steps in a manner analogous to Kalman

filtering[14,15]. In [16∼20], measurements available at multiple resolution levels were integrated by the

wavelet transform to deal with the target tracking by L. Hong.

Methods mentioned above are unrealistic for many real-world signals due to the time delay, com-

plex realization process and so on. The application of dynamic estimation methods are still a challen-

ging goal. In this paper, a novel model of DMS is built and is realized by general compactly supported

wavelets except Haar wavelet. In this paper, this kind of wavelets is denoted as general compactly

supported wavelet. It is our strong belief that the idea developed here has a far broader range of

applicability.

2 State-space models

2.1 Problem formulation

The object considered in our DMS is information source S with real state x ∈ U0 ⊂ Rn, and

we want to estimate its state based on all of the observations optimally in real-time. The states are

characterized by a differential equation and the observations are obtained in a sequence of subspaces

of the state-spaces. That is to say, the sensors are distributed in different resolution spaces, and the

observations are projections of real state on every subspace. Ranking the sensors from high resolution to

low, namely, from 1 to J , the resolution state of the first sensor is x1 ∈ U1. Similarly, x2 ∈ U2, . . . , xJ ∈

UJ , a set of linear subspaces UJ ⊂ UJ−1 ⊂ . . . ⊂ U1 ⊂ U0 in Rn space can be got.

2.2 State-space model of the continuous time DMS

1) the state space projection equation is

xj = P 0
j x, j = 1, 2, . . . , J (1)
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Assuming the projection operator U0 → Uj is P 0
j , the projection of real state x on subspace Uj can be

expressed as (1).

The resolution state x2 can be seen as linear projection of x1 from spaces U1 to U2 with the

projection operator P (1, 2). Similarly, x3 can be viewed as the projection of x2 from U2 to U3 with the

projection operator P (2, 3). (1) can in turn be written as

xj = P (j − 1, j)xj−1, j = 2, 3, . . . , J (2)

We have the following simplified form of (2)

xj = Pjx1, j = 1, 2, . . . , , J (3)

where Pj = P (j − 1, j)P (j − 2, j − 1) · · ·P (1, 2), j = 1, 2, . . . , J , P1 is I .

2) state differential equation

x1 is the most precise description of real state x that can be obtained. In other words, the

estimation of x can only be replaced with that of x1. Mapping the state differential equation to space

U1, we have

ẋ1(t) = A(t)x1(t) + B(t)w(t) (4)

where A(t) is the state transition matrix, B(t) is the noise stimulus matrix, and w(t) is a Gaussian

white noise process with covariance I .

3) augmented measurement equation

The measurement equation of j-th sensor has the form

zj(t) = Cj(t)xj(t) + vj(t), j = 1, 2, . . . , J (5)

where Cj(t) is the measurement matrix. Measurement noise vj(t) is Gaussian white noise with variance

Rj(t). They are independent of each other and uncorrelated with system noise w(t).

Substituting (3) into (5), we derive

zj(t) = Cj(t)Pjx1(t) + vj(t), j = 1, 2, . . . , J

Then we can get the augmented measurement equation

zj(t) = Cj(t)x1(t) + v(t) (6)

where

z(t) =








z1(t)

z2(t)
...

zJ(t)








, C(t) =








C1(t)P1

C2(t)P2

...

CJ (t)PJ








, v(t) =








v1(t)

v2(t)
...

vJ(t)








v(t) and w(t) are independent, and

Cov(v(t)) = diag[R1(t), R2(t), . . . , RJ(t)]

(4) and (6) constitute the continuous time DMS model. The key to build this model is to map

the estimated state to the finest scale and to introduce the state space projection equation.

3 Realization by general compactly supported wavelet

3.1 Typical discrete DMS

Discrete system can answer for many practical issues. Here, we discuss a class of typical discrete

DMS. In frequency domain, resolution stands for the system bandwidth. According to the Shannon

theorem, narrow bandwidth corresponds to low sampling rate. For convenience, we let the sampling

rate decrease from sensor 1 to sensor J by a factor of two. Obviously, sensor 1 corresponds to the finest

scale. The state at all scales in time interval ∆T is called a state block, and the measurement a data

block. Every other ∆T , the state estimation must be updated when a new data block is available.

The state xj(•) is an approximation of resolution state x1 at the finest scale. It can be expressed

in the form of the linear combination of the finest scale state x1(•), and the linear operator Pj in (3)

is actually a low-pass filter Hj .
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There is crude similarity between the multiscale analysis based on wavelet transform and the mul-

tiscale system. In wavelet transform, filters must meet some constrains to have perfect reconstruction,

but here the filter Hj is determined by the physical characteristics of the sensors. In fact, determining

the filter Hj from their physical characteristics is not easy, and it is not necessary to do so because we

have rich classes of wavelet basis.

3.2 Realization of discrete time variant DMS models by general compactly supported

wavelet

Since the sampling rate of sensors decreases by a factor of two, their frequency bandwidths are

then presumed to decrease in the same ratio. For convenience, the filters are supposed to be finite

impulse response (FIR) digital filter, a general choice is the Dau(N) compactly supported orthogonal

wavelets by Daubechies[21] and compactly supported bi-orthogonal wavelets by Cohen[22]. Haar wavelet

has only one vanishing moment. That is to say, its approximation ability is not good. If it cannot meet

the requirement of a practical system, the state node at coarse scale must be approximated by wavelet

with higher vanishing moment. In this case, the approximation precision might be much higher, but

we must pay more cost, because the node approximation at time k∆T must use the nodes outside it,

thus the model becomes complex.

Suppose that the low-pass smoothing filter corresponding to the wavelet is N-tap D0, and d0

denotes the impulse response at moment zero. Let us define

D0 = [dm, dm+1, . . . , d0, . . . , dn]

Then we have

n − m + 1 = N (7)

There are N finer nodes xj(2k − n), xj(2k − n + 1), . . . , xj(2k), . . . , xj(2k −m) that relate to one

coarse scale node xj+1(k). Generally, the scale function is preferably to be symmetric. In this case, let

m =

{
−N/2, if N is an even number

−(N − 1)/2, if N is an odd number
, n =

{
N/2 − 1, if N is an even number

(N − 1)/2, if N is an odd number

For N = 4, m = −2, and n = 1, one node at coarse scale is related to four nodes at a finer scale.

Here, the state structure is not standard bintree, the build of multiscale structure cannot be finished in

one data block. As shown in Fig. 1, the approximation of coarse scale nodes not only need two nodes

in the same time block, but also one node in the former time block and one in the latter.

Fig. 1 The state nodes′ relation between adjacent scales (N = 4, m = −2, and n = 1)

For mj = 0, 1, . . . , 2J−j − 1, the node x2(2
J−2k + m2) at scale 2 can be denoted as

x2(2
J−2k + m2) = (D0 ∗ x1) ↓2=

n∑

h=m

dhx1(2
J−1k + 2m2 − h)

where ∗ represents convolution, ↓2 denotes the downsampling by a factor of two. In the following, ↓p

denotes the downsampling by a factor of p.

Letting

Dj =
[

dm, 0, 0, . . . , 0
︸ ︷︷ ︸

2j
−1

, dm+1, 0, 0, . . . , 0
︸ ︷︷ ︸

2j
−1

, dm+2, . . . , dn−1, 0, 0, . . . , 0
︸ ︷︷ ︸

2j
−1

, dn

]

(8)
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which is obtained by inserting 2j − 1 zeros between every two coefficients of the filter, its zero impulse

response is still d0, for example

D1 = [dm, 0, dm+1, 0, dm+2, 0, . . . , dn−1, 0, dn]

Similarly, the node at scale j is obtained as follows.

Dj = D0 ∗ D1 ∗ · · · ∗ Dj−2, j = 2, 3, . . . , J (9)

Let D1 = [1]

xj(•) = (Dj
∗ x1) ↓2j−1 , j = 1, 2, . . . , J (10)

Then the tap number of filter Dj can be derived as

Nj = (2j−1
− 1)(N − 1) + 1

Obviously, Nj and N have the same parity. Letting Dj = [dj

mj , dj

mj+1
, . . . , dj

nj ], the relations between

mj , nj and m, n are
{

mj = (2j−1 − 1)m

nj = (2j−1 − 1)n

From (10), we can get

xj(2
J−jk + mj) =

nj
∑

h=mj

dj

hx1(2
J−1k + 2j−1mj − h)

At time k∆T , the root node of xJ (k) is of the form

xJ (k) = (DJ
∗ x1) ↓2J−1=

nJ
∑

h=mJ

dJ
hx1(2

J−1k − h)

It needs NJ = (2J−1−1)(N −1)+1 nodes at scale 1. Obviously, this is just the maximum node number

to approximate all of the nodes at time k∆T . Defining

x̄(k) =








x1(2
J−1k − (2J−1 − 1)n)

x1(2
J−1k − (2J−1 − 1)n + 1)

...

x1(2
J−1k − (2J−1 − 1)m








x̄(k) has NJ fine-scale state components. Denoting

Mj(mj) =
[

O, . . . , O
︸ ︷︷ ︸

Z
j
1
(mj )

dj

nj · I, dj

nj
−1

· I, . . . , dj

mj · I
︸ ︷︷ ︸

Nj

, O, . . . , O
︸ ︷︷ ︸

Z
j
2
(mj )

]

where I is Nx × Nx identity matrix, O is Nx × Nx zero matrix, Zj
1(mj) and Zj

2(mj) are

Zj
1(mi) = 2j−1mj + n(2J−1

− 2j−1)

Zj
2(mj) = m(2j−1

− 2J−1) − 2j−1mj

the node at scale j can be written as

xj(2
J−jk + mj) = Mj(mj)x̄(k) (11)

From (11), the measurement of xj(2
J−jk + mj) can be obtained

zj(2
J−jk + mj) = Cj(2

J−jk + mj)Mj(mj)x̄(k) + vj(2
J−jk = mj)

Defining

z̄j = col(zj(2
J−jk), . . . , zj(2

J−jk + mj), . . . , zj(2
J−jk + 2J−j

− 1))



No. 3 PAN Quan et al.: Modeling and Estimation of a Class of Dynamic Multiscale Systems · · · 389

C̄j(k) = col(Cj(2
J−jk)Mj(0), Ci(2

J−jk + 1)Mj(1), . . . , Cj(2
J−j(k + 1) − 1)Mj(2

J−j
− 1))

v̄j(k) = col(vj(2
J−jk), vj(2

j−jk + 1), . . . , vj(2
J−j(k + 1) − 1))

the covariance matrix of v̄j(k) is

R̄j(k) = diag[Rj(•), Rj(•), . . . , Rj(•)]

The measurement equation can be written in matrix form

z̄j(k) = C̄j(k)x̄(k) + v̄j(k) (12)

Letting

z̄(k) = col(z̄J(k), z̄J−1(k), . . . , z̄1(k))

C̄(k) = col(C̄J (k), C̄J−1(k), . . . , C̄1(k))

v̄(k) = col(v̄J (k), v̄J−1(k), . . . , v̄1(k))

the variance of Gaussian white noise v̄(k) is

R̄(k) = diag[R̄J(k), R̄J−1(k), . . . , R̄1(k)]

Then

z̄(k) = C̄(k)x̄(k) + v̄(k) (13)

For the general compactly supported wavelet, the multiscale system does not constitute bintree,

a portion of the state vector x̄(k) overlap with that of x̄(k + 1). When the measurements of time

(k + 1)∆T are available, the overlapped part is performed by a smoothing process. The last element of

x̄(k) is x1(2
J−1k − (2J−1 − 1)m), the first element of x̄(k + 1) is x1(2

J−1(k + 1) − (2J−1 − 1)n), the

overlapping length is l1 = (2J−1 − 1)(N − 2), and the non-overlapping length l2 = 2J−1. In order to

simplify the expression, we define l(k) = 2J−1k − (2J−1 − 1)m. Then the last element of x̄(k + 1) is

x1(l(k + 1)), and that of x̄(k) is x1(l(k)), namely, x1(l(k + 1) − l2).

For the non-overlapping parts of x̄(k + 1) and x̄(k), the following can be obtained according to

the state equation

x1(l(k + 1) − l2 + 1 + m1) =

m1∏

n=0

A(l(k + 1) − l2 + 1 + m1 − n) · x1(l(k + 1) − l2)+

m1∑

h=0

m1−h−1
∏

n=0

A(l(k + 1) − l2 + 1 + m1 − n) · B(l(k + 1) − l2 + h)w(l(k + 1) − l2 + h)

where m1 = 0, 1, . . . , 2J−1. Define

w̄(k) = col(w(l(k + 1) − l2), w(l(k + 1) − l2 + 1), . . . , w(l(k + 1) − 1))

A(k, m1) =

m1∏

n=0

A(l(k + 1) − l2 + m1 − n)

B(k, m1) =






















( m1−1
∏

n=0

A(l(k + 1) − l2 + m1 − n) · B(l(k + 1) − l2)
)T

( m1−2
∏

n=0

A(l(k + 1) − l2 + m1 − n) · B(l(k + 1) − l2 + 1)
)T

...

(B(l(k + 1) − l2 + m1))
T

O
...

O






















T
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where w̄(k) is 2J−1u×1 Gaussian white noise with covariance I , A(k, m1) is Nx ×Nx matrix, B(k, m1)

is Nx × 2J−1u matrix, the elements in the last (2J−1 − m1 − 1)u columns are all zeros. Let

A(k) =








A(k, 0)

A(k, 1)
...

A(k, 2J−1 − 1)








, B(k) =








B(k, 0)

B(k, 1)
...

B(k, 2J−1 − 1)








, x̄(2, k + 1) =








x1(l(k + 1) − l2 + 1)

x1(l(k + 1) − l2 + 2)
...

x1(l(k + 1))








A(k) is l2 ·Nx ×Nx matrix, B(k) is l2 ·Nx × 2J−1u matrix, and x̄(2, k + 1) is l2 ·Nx × 1 matrix. Then

x̄(2, k + 1) is non-overlapping parts of x̄(k + 1) and x̄(k), which can be written as

x̄(2, k + 1) = [O A(k)]x̄(k) + B(k)w̄(k) (14)

where O is a matrix with the indicated dimension whose elements are all zeros.

For simple expression, letting f(k+1) = 2J−1(k+1)−(2J−1−1)n, the overlapping part of x̄(k+1)

and x̄(k) is

x̄(1, k + 1) =








x1(f(k + 1))

x1(f(k + 1) + 1)
...

x1(f(k + 1) + l1 − 1)








If Ī = diag
(

I, I, . . . , I
︸ ︷︷ ︸

l1−1

)

, then

x̄(1, k + 1) =

[
O Ī O

O O I

]

x̄(k) + [O1]w̄(k)

where O1 is l1 · Nx × 2J−1u zero matrix. The state transition equation has the form

x̄(k + 1) =

[
x̄(1, k + 1)

x̄(2, k + 1)

]

=





O Ī O

O O I

O O A(k)



 x̄(k) +

[
O1

B(k)

]

w̄(k) (15)

Letting

Ā(k) =





O Ī O

O O I

O O A(k)



 , B̄(k) =

[
O1

B(k)

]

(15) can be written as

x̄(k + 1) = Ā(k)x̄(k) + B̄(k)w̄(k) (16)

For convenience, (13) and (16) are written together as follows.

{
x̄(k + 1) = Ā(k)x̄(k) + B̄(k)w̄(k)

z̄(k) = C̄(k)x̄(k) + v̄(k)
(17)

where w̄(k) and v̄(k) are uncorrelated Gaussian white noise. For the optimal filtering output at each

scale, we have Theorem 1[23].

Theorem 1. If ˆ̄x(k) is the LMMSE of x̄(k), then the LMMSE of node xj(2
J−jk + mj) is

Mj(mj) · ˆ̄x(k).

4 Simulation

We take constant velocity motion as illustrative examples, whose system equation at the finest

scale is

x1(k1) = Ax1(k1) + Bw(k1)

where

A =

[
1 T

0 1

]

, B =
[1

2
T 2 T

]T
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T is the sampling rate, w(•) is Gaussian white noise with zero mean and its variance is q(•). Suppose

the DMS has two scales, and the measurements are available at both scales, i.e.,

{
z1(k1) = C1x1(k1) + v1(k1)

z2(k2) = C2x2(k2) + v2(k2)

where kj denotes the sampling time at scale j, C1 = C2 = [1 0], Gaussian white noise v1(•) and

v2(•) are with zero-mean and variances r1(•) and r2(•), respectively. They are uncorrelated with w(•).

The first component of x1 is displacement, and the second is velocity.

Here CDF(2,2) wavelet is used, and let T = 1, q = 1, r1 = 6.25, r2 = 3.24. Figs. 2(a) and

2(b) compare the measurement noise with the estimation error of displacement at scale 1 and scale 2.

Figs. 3(a) and 3(b) compare the estimation error of displacement and velocity at scale 1 obtained by

performing Kalman filter directly and by the algorithm in this paper. The noise compression ratio of

the algorithm in this paper is 2.4102 db higher than that by performing Kalman filter directly.

(a) Scale 1, the noise compression ratio is 5.4666 db (b) Scale 2, the noise compression ratio is 5.0171 db

Fig. 2 Measurement noise (dotted) and estimation error (solid) of displacement

(a) Displacement (b) Velocity

Fig. 3 Estimation error at scale 1 obtained by performing Kalman filter directly (dotted) and

by the algorithm in this paper (solid)

Using our model and several groups of different parameters, the algorithm in this paper is compared

with that of L. Hong[16] (Table 1). It can be seen that the estimation accuracy of our algorithm is better

than that of L. Hong at each scale.
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Table 1 Noise compression ratios of L. Hong and this paper (db)

parameters scale 1 scale 2

T q r1 r2 L. Hong this paper L. Hong this paper

1 1 6.25 3.24 2.6874 5.8005 0.4620 5.1124

1 2 6.25 3.24 2.0948 5.3227 0.3359 4.9952

1 4 6.25 3.24 1.5579 4.7975 0.2250 4.8729

1 1 4 2.25 2.2946 4.3560 0.4088 5.0048

1 1 9 6.25 2.9739 4.7624 0.6964 5.7632

1 1 16 9 3.5452 5.4000 0.7118 5.2610

5 Conclusion

The modeling and optimal estimation of a class of DMS that is observed independently by several

sensors at different scales are proposed. Using general compactly supported wavelet transform to

approximate the state space projection between scales, we generalize the DMS into the standard state

space model. Then the Kalman filtering is employed as the LMMSE algorithm. An example is presented

to illustrate the proposed scheme and its relationship with the traditional Kalman filtering and the

multiresolutional filtering algorithm of L. Hong.
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