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Abstract A necessary and sufficient condition of the quadratic D-stability for a class of uncertain

linear systems is presented in terms of linear matrix inequality (LMI) technology. Finally, the validity

and less conservatism of the obtained results in this paper are illustrated by a benchmark example.
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1 Introduction

The analysis and synthesis problem of pole location and D-stability for dynamic systems attracts

many researchers since the stability, the rapidity of convergence and the steadily of switch systems are

usually considered in practice. Gutman S. and Jury E.I.[1] gave a necessary and sufficient condition for

a matrix whose eigenvalues are in a polynomial region in the complex plane. The results in [1] were a

summary of prophase works in this area which provided a good theoretic foundation for designing control

systems. Chilali M. and Gahinet P.[2] obtained a necessary and sufficient condition for a matrix whose

eigenvalues are in an LMI region in the complex plane based on which an H∞ design method was set

up by LMI approach. Recently, the robust D-stability analysis and synthesis problem has also become

an attractive area of research. Chilali M. et al.
[3] studied the robust D-stability problem with LMI

region pole replacement constraint for a class of structure uncertain and parameter uncertain systems.

Peaucelle D. et al.
[4] and Valter J. et al.

[5] researched the robust D-stability problem constrained by

some quadratic matrix inequality region pole replacement for state feedback control systems with convex

polynomial uncertainty. Mao W. J. et al.
[6] studied the quadratic stability problem for a class of

dynamic systems with interval uncertainty. In this paper, we study the state feedback problem with

quadratic matrix inequality region stability constraint for a class of linear systems with norm bounded

uncertainty. We shall give a sufficient and necessary condition for feedback systems to be quadratic

D-stability based on which a designing method of state feedback controller is obtained. Finally, the

validity and less conservatism of the obtained results in this paper are illustrated by a benchmark

example.

Throughout this paper, Rn denotes the n-dimensional real Euclidean space and C denotes complex

plane. Mm×n denotes the set of all m × n matrices and MT means the transposition of matrix M .

Matrix inequality X > 0 (X > 0) means X is a symmetrical positive definite matrix (symmetric semi-

positive definite matrix). 0 and I denote zero matrix and unit matrix, respectively. The sign ∗ in a

matrix denotes the symmetrical element. The operation sign ⊗ denotes the Kronecker production[1∼5]

of two matrices, i.e., A ⊗ B = [AijB], where A = [Aij ]m×n.

2 Description of problem

Consider the following linear system

δ[x(t)] = A(t)x(t) + B(t)u(t) (1)
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where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input vector of the system, δ[·] denotes the derived

number to time for continuous time systems or the difference for discrete time system. The parameter

matrices A(t) ∈ Mn×n, B(t) ∈ Mn×p of system belong to

A = {A0 + DE(t)F : E
T(t)E(t) 6 I} (2a)

B = {B0 + MH(t)N : H
T(t)H(t) 6 I} (2b)

respectively, where A0, D, F, B0, M and N are real matrices with appropriate dimensions, E(t) and

H(t) are real time varying matrices with appropriate dimensions. In the case of no confusion, we omit

the time variable t in relative expressions in the sequel statements.

In this paper, we consider quadratic matrix inequality region in complex plane[4,5]:

D = {z ∈ C : R11 + R12z + R
T
12z

∗ + R22zz
∗

< 0} (3)

where R11, R12, R22 ∈ Md×d, R11, R22 are symmetric matrices, R22 = LLT is semi-positive definite

matrix and d is called rank of region D. Let RD =

[

R11 R12

RT
12 R22

]

and call it the matrix of region D. It

is easy to see that D is a convex symmetric region with respect to the real axis.

Note 1. There are two special quadratic matrix inequality regions. One is D(α) = {z ∈ C :

Re(z) < −α} (α > 0) which is used to analysis α-decaying degree of system and whose rank and

region matrix are 1 and RD(α) =

[

2α 1

1 0

]

, respectively. The other is open disk plate D(c, r) = {z ∈

C : |z + c| < r, r > 0} whose rank and region matrix are 1 and RD(c,r) =

[

c2 − r2 c

c 1

]

, respectively.

Furthermore, the typical regions used in the usual stability analysis are the left-hand side of complex

plane D(0) (continuous time system) and the disk D(0, 1) (discrete time systems). These two regions

are all regions with rank 1.

Definition 1. Matrix A is said to be D-stable if all its eigenvalues lie in the region D defined in

(3).

D-stability can be characterized by LMI approach.

Theorem 1[1,2]. A ∈ Rn×n is D-stable if and only if there exists a symmetric positive definite

matrix P ∈ Mn×n, such that

R11 ⊗ P + R12 ⊗ (PA) + R
T
12 ⊗ (AT

P ) + R22 ⊗ (AT
PA) < 0 (4)

From Theorem 1, we can define quadratic D-stability and robust D-stability of a dynamic system

as follows.

Definition 2. Uncertain linear system (1) with zero input is said to be robust D-stable if for

every A(t) ∈ A, there exists a varying symmetric positive definite matrix P with respect to A(t), such

that

R11 ⊗ P + R12 ⊗ (PA) + R
T
12 ⊗ (AT

P ) + R22 ⊗ (AT
PA) < 0 (5)

Uncertain linear system (1) with zero input is said to be quadratic D-stable if there exists an invariable

symmetric positive definite matrix P ∈ Rn×n such that inequality (5) holds.

It is obvious that quadratic D-stability implies robust D-stability for linear system (1) with zero

input. By Schur complement lemma, inequality (5) is equivalent to the following LMI

[

R11 ⊗ P + R12 ⊗ (PA) + RT
12 ⊗ (ATP ) ∗

LT ⊗ (PA) −Id ⊗ P

]

< 0 (6)

The aim of this paper is to design a state feedback controller

u(t) = Kx(t) (7)

such that the closed-loop system

δ[x(t)] = (A(t) + B(t)K)x(t) (8)
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is quadratic D-stable. That is to seek the gain matrix K of controller and a symmetric positive definite

matrix P , such that for every A(t) ∈ A, B(t) ∈ B, the inequality

R11 ⊗P +R12 ⊗ (P (A+BK))+R
T
12 ⊗ ((AT +K

T
B

T)P )+R22 ⊗ ((AT +K
T
B

T)P (A+BK)) < 0 (9)

or
[

R11 ⊗ P + R12 ⊗ (P (A + BK)) + RT
12 ⊗ ((AT + KTBT)P ) ∗

LT ⊗ (P (A + BK)) −Id ⊗ P

]

< 0 (10)

holds.

To prove the main consults in this paper, we introduce the following lemma firstly.

Lemma 1[7]. Let Y, H,E be matrices with appropriate dimensions and Y a symmetrical matrix.

Then for every matrix F with FTF 6 I ,

Y + HFE + E
T
F

T
H

T
< 0 (11)

if and only if there exists a constant ε > 0, such that

Y + εHH
T + ε

−1
E

T
E < 0 (12)

3 Main results

In this section, we give a necessary and sufficient condition guaranteeing uncertain linear system

(1) to be quadratic D-stable. Since there is not time-delay in system (1), the methods to prove the main

results in this paper are applicable to both continuous systems and discrete systems. So we consider

only the case of continuous systems in the sequel theorems.

Theorem 2. The n-dimension uncertain dynamic system (1) with zero input is quadratic D-

stable if and only if there exists a symmetric positive definite matrix X ∈ Rn×n and a scalar quantity

λ > 0, such that the following inequality holds





R11⊗X+R12⊗(A0X)+RT
12⊗(XAT

0 )+λ(R12R
T
12)⊗(DDT) ∗ ∗

LT ⊗ (A0X) + λ(LTRT
12) ⊗ (DDT) −Id⊗X+λ(LTL)⊗(DDT) ∗

Id ⊗ (FX) 0 −λI



< 0

(13)

Proof. From Definition 2, uncertain linear system (1) with zero input is quadratic D-stable if

there exists an invariable symmetric positive definite matrix P ∈ Rn×n, such that inequality (6) holds

for every A(t) ∈ A. Substituting A0 + DE(t)F to A in (6) and making appropriate transmutation, one

obtains

Φ +

[

R12 ⊗ (PD)

LT ⊗ (PD)

]

(Id ⊗ E)[Id ⊗ F 0] +

( [

R12 ⊗ (PD)

LT ⊗ (PD)

]

(Id ⊗ E)[Id ⊗ F 0]

)T

< 0 (14)

where Φ =

[

R11 ⊗ P + R12 ⊗ (PA0) + RT
12 ⊗ (AT

0 P ) ∗

LT ⊗ (PA0) −Id ⊗ P

]

. From Lemma 1 and ETE 6 I ,

inequality (14) is equivalent to that there exists a real number λ > 0 such that

Φ + λ

[

R12 ⊗ (PD)

LT ⊗ (PD)

]

[RT
12 ⊗ (DT

P ) L ⊗ (DT
P )] + λ

−1

[

Id ⊗ FT

0

]

[Id ⊗ F 0] < 0 (15)

Performing the congruence transformation diag{Id ⊗ P−1, Id ⊗ P−1} in (15), letting P−1 = X and

making use of Schur complement lemma, we know that the resulting inequality is equivalent to (13).

This completes the proof. �

Inequality (13) is an LMI with X and λ in which the solutions of variables can be easily found in

terms of Matlab tool box.

For D-stablility of uncertain system (1), we have the following result.
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Theorem 3. Closed-loop system (8) is quadratic D-stable if and only if there exist a symmetric

positive definite matrix X ∈ Rn×n a matrix Z ∈ Rp×n and two real numbers λ > 0 and δ > 0, such

that








Θ11 ∗ ∗ ∗

Θ21 −Id ⊗ X + λ(LTL) ⊗ (DDT) + δ(LTL) ⊗ (MMT) ∗ ∗

Id ⊗ (FX) 0 −λI ∗

Id ⊗ (NZ) 0 0 −δI









< 0 (16)

where

Θ11 = R11 ⊗ X + R12 ⊗ (A0X + B0Z) + R
T
12 ⊗ (XA

T
0 + Z

T
B

T
0 )

Θ = L
T ⊗ (A0X + B0Z) + λ(LT

R
T
12) ⊗ (DD

T) + δ(LT
R

T
12) ⊗ (MM

T)

If there exists feasible solution (X, Z) in LMI (16), then the gain matrix of the state feedback controller

is K = ZX−1.

Proof. By Theorem 1, closed-loop system (8) is quadratic D-stable if there exists an invariable

symmetric positive definite matrix P ∈ Rn×n, such that inequality (10) holds for every A(t) ∈ A and

B(t) ∈ B. Substituting A0 + DE(t)F to A and B0 + MH(t)N to B in (10) and making appropriate

transmutation, one obtains

Ψ + Ψ1 + Ψ
T
1 + Ψ2 + Ψ

T
2 < 0 (17)

where

Ψ =

[

R11 ⊗ P + R12 ⊗ (P (A0 + B0K)) + RT
12 ⊗ ((AT

0 + KTBT
0 )P ) ∗

LT ⊗ (P (A0 + B0K)) −Id ⊗ P

]

Ψ1 =

[

R12 ⊗ (PD)

LT ⊗ (PD)

]

(Id ⊗ E)[Id ⊗ F 0], Ψ2 =

[

R12 ⊗ (PM)

LT ⊗ (PM)

]

(Id ⊗ H)[In ⊗ (NK) 0]

By Lemma 1 and ETE 6 I,HTH 6 I , inequality (17) is equivalent to that there exist real numbers

λ > 0 and δ > 0 such that

Ψ + λ

[

R12 ⊗ (PD)

LT ⊗ (PD)

]

[RT
12 ⊗ (DT

P ) L ⊗ (DT
P )] + λ

−1

[

Id ⊗ FT

0

]

[Id ⊗ F 0]+

δ

[

R12 ⊗ (PM)

LT ⊗ (PM)

]

[RT
12 ⊗ (MT

P ) L ⊗ (MT
P )] + δ

−1

[

Id ⊗ (KTNT)

0

]

[Id ⊗ (NK) 0] < 0

(18)

Performing the congruence transformation diag{Id ⊗ P−1, Id ⊗ P−1} in (18), one gets

[

R11 ⊗ P−1 + R12 ⊗ ((A0 + B0K)P−1) + RT
12 ⊗ (P−1(AT

0 + KTBT
0 )) ∗

LT ⊗ ((A0 + B0K)P−1) −Id ⊗ P−1

]

+

λ

[

R12 ⊗ D

LT ⊗ D

]

[RT
12 ⊗ D

T
L ⊗ D

T] + λ
−1

[

Id ⊗ (P−1FT)

0

]

[Id ⊗ (FP
−1) 0]+

δ

[

R12 ⊗ M

LT ⊗ M

]

[RT
12 ⊗ M

T
L ⊗ M

T] + δ
−1

[

Id ⊗ (P−1KTNT)

0

]

[Id ⊗ (NKP
−1) 0] < 0

(19)

Letting P−1 = X, KX = Z in (19) � one knows that inequality (19) is equivalent to inequality (16) by

Schur complement lemma. Furthermore, if there exists feasible solution (X, Z) in LMI (16), then the

gain matrix of state feedback controller is K = ZX−1. This completes the proof. �

Inequality (16) is an LMI with X and λ in which the solutions of variables can be easily found in

terms of Matlab tool box. Therefore Inequality (16) is a sufficient and necessary condition with which

the quadratic D-stability of closed-loop system (8) can be easily checked. And it is since inequality (16)

is a sufficient and necessary condition that the design method of state feedback controller for system

(1) in this paper possesses less conservatism.

4 Numeral example
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In this section, we give a numeral example to illustrate how to make use of Theorem 2 to check

the quadratic D-stability of system (1).

Consider the flight control problem of helicopter studied by Kosmidou. et al. in [8] in which the

dynamic model is as follows.

ẋ(t) = (A0 + r1(t)A1 + r2(t)A2)x(t) + (B0 + s1(t)B1)u(t), x(0) = x0 (20)

where

A0 =









−0.0366 0.0271 0.0188 −0.4555

0.0482 −0.0100 0.0024 −4.0208

0.1002 0.2855 −0.7070 1.3229

0 0 1 −1.0880









, B0 =









0.4422 0.1711

3.0447 −7.5922

−5.5200 4.9900

0 0









, x0 =









1

1

1

1









A1 =









0 0 0 0

0 0 0 0

0 0.2192 0 0

0 0 0 0









, A2 =









0 0 0 0

0 0 0 0

0 0 0 1.2031

0 0 0 0









, B1 =









0 0

1.0673 0

0 0

0 0









r1(t), r2(t) and s1(t) are uncertain parameters in system which satisfy

−1 6 r1(t) 6 1, −1 6 r2(t) 6 1, −1 6 s1(t) 6 1

System (20) can be expressed as

ẋ(t) = (A0 + DEF )x(t) + (B0 + MHN)u(t) (21)

where

D = M =









0 0 0

0 0 1

1 1 0

0 0 0









, E = H =





r1 0 0

0 r2 0

0 0 s1



 , F =





0 0.2192 0 0

0 0 0 0.2031

0 0 0 0



 , N =





0 0

0 0

1.0673 0





Let state feedback control law be (7). Consider the following region whose rank is not equal 1:

D = (0.9) ∩ D(1, 1.1) = {z ∈ C : Re(z) < −0.9, |z + 1| < 1.1} : R =











1.8 0 1 0

0 -0.21 0 1

1 0 0 0

0 1 0 1











Making use of Theorem 3, one can obtain the gain matrix of state feedback controller guaranteeing

uncertain linear system (21) to be D-stable

K =

[

−0.8037 0.1006 0.2745 0.1726

−0.2854 0.1038 0.0171 −0.4497

]

For convenience of emulation, we let uncertain parameters in system be r1(t) = sin 5t, r2(t) = cos 5t

and s1(t) = sin t (0 6 t 6 2π). For region D mentioned above, we may paint the state responding curve

and the poles distributing graph of the closed-loop system, respectively, as following Fig. 1 and Fig. 2.

It is easy to see from Fig. 1 that uncertain linear state feedback system (20) is robust stable and

from Fig. 2 that the closed-loop poles of uncertain linear state feedback system (20) lie in the region .
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Fig. 1 State responding curve of closed-loop system to

quadratic D-stability

Fig. 2 Pole distribution of closed-loop system to

quadratic stability

5 Conclusion

Quadratic matrix inequality regions are wide which includes LMI regions. Therefore, the quadratic

D-stability problem of state feedback system studied in this paper possesses universality. Furthermore,

since inequality (16) is a sufficient and necessary condition that guarantees the closed-loop system (8)

quadratic D-stable, the design method of state feedback controller for system (1) in this paper possesses

less conservatism. A benchmark example is given to illustrate the validity of the obtained results in

this paper.
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