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Robust Dissipative Control for Linear Multi-variable Systems1)
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Abstract Robust quadratic dissipative control for a class of linear multi-variable systems with pa-
rameter uncertainties is considered, where the uncertainties are expressed in a linear fractional form.
For the nominal system without uncertainties, the equivalence between quadratic dissipativeness and
positive realness is established, and conditions are derived for linear systems to be quadratic dissi-
pative. As for uncertain systems, it is shown that the robust quadratic dissipative control problem
for the uncertain system can be reduced to the corresponding problem for a related system without
uncertainties. The control problem concerned can be solved using LMI approach. The results of the
paper unify existing results on H∞ control and positive real control and provide a more flexible and
less conservative control design method.
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1 Introduction

The notion of dissipative systems plays important roles in system and control theory and its appli-

cations extensively in stability analysis, nonlinear control, adaptive control system design and so on[1,2].

For last decades, passive control and H∞ control have received much attention[3∼7]. However, passive

control may lead to conservative results because only the phase information of systems is taken into

account, while H∞ control can also get conservative results because only the gain information of systems

is used for the control. By contrast, dissipative control may lead to less conservative results since dissi-

pativeness is a generalization of passivity and H∞ performance, and provides a flexible tradoff between

gain and phase. This is the reason why dissipative control problems have attracted much interest in

recent years.

In this paper, we will address quadratic dissipative analysis and control problems for linear sys-

tems with norm-bounded parameter uncertainties. First we will investigate conditions under which the

uncertain system is robust quadratic dissipative. Then we will design both state-feedback and output

feedback controllers such that the closed-loop system is robust quadratic dissipative.

The rest of the paper is organized as follows. Section 2 gives system description and preliminaries.

In Section 3, we present the necessary and sufficient conditions for the uncertain system to be robust

quadratic dissipative. Robust quadratic dissipative control problems will be discussed in Section 4.

Finally some concluding remarks are drawn in Section 5.

2 System description and preliminaries

Notation: In the following, if not explicitly stated, matrices are assumed to have compatible dimen-

sions. The identity and zero matrices are denoted by I and 0, respectively. The notation M > 0(< 0)

stands for M is positive definite (negative definite) and G∗(s) means the complex conjugate transpose

of G(s).

Consider the uncertain linear system described by

(Σ∆) : ẋ(t) = A∆x(t) + B∆ω(t), x(0) = 0

z(t) = C∆x(t) + D∆ω(t)

where x(t) ∈ Rn is the state, ω(t) ∈ Rm the exogenous input and z(t) ∈ Rp the controlled output.

A∆, B∆, C∆ and D∆ are uncertain parameter matrices satisfying the following assumptions

A1.

[

A∆ B∆

C∆ D∆

]

=

[

A B

C D

]

−

[

H

H1

]

∆(t)[E E1] (1)
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where ∆(t) depends on uncertain matrix F (t) ∈ Ri×j :

∆(t) = F (t)[I + JF (t)]−1, FT(t)F (t) 6 I, JTJ < I (2)

and A, B, C, D, H,H1, E, E1, J are known constant matrices.

In the following the parameter uncertainties are said to be admissible if both (1) and (2) hold.

Now let′s recall the notion of quadratic dissipativeness. Consider the nominal system of system

(Σ∆), that is, system (Σ∆) satisfying F (t) = 0:

(Σ1) : ẋ(t) = Ax(t) + Bω(t), x(0) = 0

z(t) = Cx(t) + Dω(t)

with its transfer function matrix

G(s) = D + C(sI − A)−1B

It is assumed that system (Σ1) is controllable and observable. Given Q ∈ Rp×p, S ∈ Rp×m and R ∈

Rm×m with Q = QT and R = RT. Denote

M(s) = G∗(s)QG(s) + STG(s) + G∗(s)S + R

Then, based on the definition of quadratic dissipativeness in [8], we give a notation of strictly quadratic

dissipativeness as follows.

Definition 1. Assume that A is asymptotically stable. System (Σ1) is said to be (Q, S, R) −

dissipative if M(jω) > 0,∀0 6 ω < ∞ and system (Σ1) is said to be strictly(Q,S, R) − dissipative

if M(jω) > 0,∀0 6 ω 6 ∞. For short (Q, S, R) − dissipative and strictly(Q,S, R) − dissipative are

referred to as quadratic dissipative and strictly quadratic dissipative, respectively.

When Q = R = 0, S = I, p = m, Definition 1 reduces to the following definition:

Definition 2. Assume that A is asymptotically stable. System (Σ1) is said to be strictly positive

real if G(jω) + G∗(jω) > 0, 0 6 ω < ∞ and system (Σ1) is said to be extended strictly positive real

(ESPR) if G(jω) + G∗(jω) > 0, 0 6 ω 6 ∞.

The strictly(Q,S, R) − dissipative includes not only extended strictly positive realness but also

the standard H∞ performance as special cases. When Q = −I, S = 0 and R = I , the strictly(Q,S, R)−

dissipative reduces to the standard H∞ performance. Noting that Q 6 0 holds in these two cases, in

the following we suppose

A2. Q̄ = −Q > 0

Definition 2 is a frequency domain characterization of ESPR systems. The state space characteri-

zation of ESPR systems can be given by

Lemma 1[9]. Given system (Σ1) with p = m, the following statements are equivalent:

a) (Σ1) is ESPR;

b) There exists 0 < P ∈ Rn×n such that

[

ATP + PA CT
− PB

C − BTP −(DT + D)

]

< 0.

[8] obtained a state space characterization of quadratic dissipative systems by spectral factorization.

For the strictly quadratic dissipative case we will give a corresponding result, which is essential to deal

with strictly quadratic dissipative control problems. Augmenting system (Σ1), a system is given as

follows.

(Σ2) : ẋ(t) = Ax(t) + [B 0]ω̄(t)

z(t) =

[

STC

−Q̄1/2C

]

x(t) +

[

R/2 + STD 0

−Q̄1/2D Ip/2

]

ω̄(t)

we have

Lemma 2. Consider systems (Σ1) and (Σ2), the following statements are equivalent:

a) (Σ1) is strictly(Q,S, R) − dissipative

b) (Σ2) is ESPR
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c) There exists 0 < P ∈ Rn×n such that





ATP + PA PB − CTS CTQ̄1/2

BTP − STC −DTS − STD − R DTQ̄1/2

Q̄1/2C Q̄1/2D −I



 < 0 (3)

Proof. The transfer function matrix of (Σ2) is

T (s) =

[

R/2 + STG(s) 0

−Q̄1/2G(s) Ip/2

]

Hence, b) ⇔ A is asymptotically stable and

[

R + STG(jω) + G∗(jω)S −G∗(jω)Q̄1/2

−Q̄1/2G(jω) Ip

]

> 0, ∀0 6 ω 6 ∞

⇔ A is asymptotically stable and

G∗(jω)QG(jω) + STG(jω) + G∗(jω)S + R > 0, ∀0 6 ω 6 ∞

⇔ a).

By Lemma1, b) ⇔ c). This completes the proof. �

By establishing equivalence between the strictly quadratic dissipativeness of system (Σ1) and the

extended strictly positive realness of another associated with (Σ1), Lemma 2 gives a state space charac-

terization of strictly quadratic dissipative systems, which will plays a key role in next sections.

3 Robustly dissipative analysis problem

Now we investigate conditions under which the uncertain system (Σ∆) is strict quadratic dissipative

for all admissible uncertainties.

Definition 3. System (Σ∆) satisfying assumption A.1 is said to be robustly strict

(Q, S, R) − dissipative if there exists 0 < P ∈ Rn×n such that the following LMI holds:





AT
∆P + PA∆ PB∆ − CT

∆S CT
∆Q̄1/2

BT
∆P − STC∆ −DT

4S − STD4 − R DT
4Q̄1/2

Q̄1/2C∆ Q̄1/2D4 −I



 < 0 (4)

for all admissible uncertainties.

For short robustly strict(Q,S, R) − dissipative is said to be robustly strict quadratic dissipative.

Now that condition (4) is difficult to verify because of the uncertainties, we will reduce the robustly

dissipative analysis problem of (Σ∆) to that of a system without uncertainties. Introducing a system

associated with (Σ∆):

(Σε) : ẋ(t) = Ax(t) + Bεω̄(t) = Ax(t) + [B εH ]ω̄(t), x(0) = 0

z(t) = Cεx(t) + Dεω̄(t) =

[

ε−1E

C

]

x(t) +

[

ε−1E1 J

D εH1

]

ω̄(t)

where ε > 0 will be specified later.

Denoting
_

Q=

[

−I 0

0 Q

]

,
_

S=

[

0 0

S 0

]

,
_

R=

[

R 0

0 I

]

,
_

Q−= −
_

Q

then, we have

Theorem 1. System (Σ∆) is robustly strict(Q,S, R) − dissipative if and only if there exists a

scalar ε > 0 such that (Σε) is strictly(
_

Q,
_

S,
_

R) − dissipative.

Proof. By Definition 3, (Σ∆) is robustly strict(Q,S, R) − dissipative if and only if there exists

0 < P ∈ Rn×n such that




AT
∆P + PA∆ PB∆ − CT

∆S CT
∆Q̄1/2

BT
∆P − STC∆ −DT

4S − STD4 − R DT
4Q̄1/2

Q̄1/2C∆ Q̄1/2D4 −I



 < 0
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for all admissible uncertainties. Observing (1), it is easy to see that




ATP + PA PB − CTS CTQ̄1/2

BTP − STC −DT
k S − STD − R DT

k Q̄1/2

Q̄1/2C Q̄1/2Dk −I



−





PH

−STH1

Q̄1/2H1



 ∆(t)[E E1 0] −









PH

−STH1

Q̄1/2H1



 ∆(t)[E E1 0]





T

< 0

This LMI is equivalent to




ATP + PA PB − CTS CTQ̄1/2

BTP − STC −DTS − STD − R DTQ̄1/2

Q̄1/2C Q̄1/2D −I



 +





εPH ε−1ET

−εSTH1 ε−1ET
1

εQ̄1/2H1 0





[

I −JT

−J I

]−1




εPH ε−1ET

−εSTH1 ε−1ET
1

εQ̄1/2H1 0





T

< 0

for some ε > 0 (See [3]). By Schur complements, it follows that













ATP + PA PB − CTS εPH ε−1ET CTQ̄1/2

BTP − STC −DTS − STD − R −εSTH1 ε−1ET
1 DTQ̄1/2

εHTP −εHT
1 S −I JT εHT

1 Q̄1/2

ε−1E ε−1E1 J −I 0

Q̄1/2C Q̄1/2D εQ̄1/2H1 0 −I













< 0

i.e.,






ATP + PA PBε − CT
ε

_

S CT
ε

_

Q
1/2

−

BT
ε P−

_

S
T

Cε −DT
ε

_

S −
_

S
T

Dε−
_

R DT
ε

_

Q
1/2

−
_

Q
1/2

− Cε

_

Q
1/2

− Dε −I






< 0

Thus, (Σε) is strictly(
_

Q,
_

S,
_

R) − dissipative. �

In view of Theorem 1, the robustly strict quadratic dissipative analysis of system (Σ∆) is simplified

to that of (Σε) without uncertainties. The latter can be solved using LMI approach.

Theorem 2. (Σε) is strictly(
_

Q,
_

S,
_

R) − dissipative if and only if there exists a scalar µ > 0 and

a matrix X > 0 such that












XAT + AX B − XCTS µH XET XCTQ̄1/2

BT
− STCX −DTS − STD − R −µSTH1 ET

1 DTQ̄1/2

µHT
−µHT

1 S −µI µJT µHT
1 Q̄1/2

EX E1 µJ −µI 0

Q̄1/2CX Q̄1/2D µQ̄1/2H1 0 −I













< 0 (5)

Proof. By Lemma 2, (Σε) is strictly(
_

Q,
_

S,
_

R) − dissipative if and only if there exists a scalar

ε > 0 and a matrix P > 0 such that












ATP + PA PB − CTS εPH ε−1ET CTQ̄1/2

BTP − STC −DTS − STD − R −εSTH1 ε−1ET
1 DTQ̄1/2

εHTP −εHT
1 S −I JT εHT

1 Q̄1/2

ε−1E ε−1E1 J −I 0

Q̄1/2C Q̄1/2D εQ̄1/2H1 0 −I













< 0

Pre-multiply and post-multiply the last matrix by diag(P−1, I, εI, εI, I) and let ε2 = µ and P−1 = X.

The desired result follows immediately. �

4 Robustly dissipative control problem

Consider the following uncertain system

(Σ∆s) : ẋ(t) = A∆x(t) + Bω(t) + B1∆u(t), x(0) = 0
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z(t) = Cx(t) + D∆ω(t) + D12∆u(t)

where u(t) ∈ Rq is the control input, B1∆ = B1 − H∆(t)E2, D12 = D12 − H1∆(t)E2, B1, D12 and E2

are known matrices, and the rest matrices are the same as those in system (Σ∆).

4.1 State-feedback design

Suppose the state can be measured, the robustly dissipative control problem via state feedback can

be stated as follows: design a state feedback controller u(t) = Kx(t) for uncertain system (Σ∆) such

that the closed-loop system is robustly strict quadratic dissipative. It is expected to reduce the robustly

dissipative control problem via state feedback to that for a system without uncertainties. To this end,

an auxiliary system associated with (Σ∆) is introduced.

(Σεs) : ẋ(t) = Ax(t) + Bεω̄(t) + B1u(t), x(0) = 0

z(t) = Cεx(t) + Dεω̄(t) + D1εu(t)

where DT
1ε = [ε−1ET

2 DT
12].

Theorem 3. There exists a state-feedback controller u(t) = Kx(t) for system (Σ∆s) such that the

resulting closed-loop system is robustly strict(Q, S, R) − dissipative if and only if there exists a scalar

ε > 0 such that the closed-loop system composed of system (Σεs) and the controller is strictly

(
_

Q,
_

S,
_

R) − dissipative.

Proof. Applying u(t) = Kx(t) to (Σ∆s), we get the closed-loop system

ẋ(t) = Ã∆x(t) + B4ω̄(t), x(0) = 0, z(t) = C̃∆x(t) + D∆ω̄(t)

where

Ã∆ = Ã − H∆(t)Ẽ, C̃∆ = C̃ − H1∆(t)Ẽ

and

Ã = A + B1K, C̃ = C + D12K, Ẽ = E + E2K

Applying u(t) = Kx(t) to (Σεs), we obtain

(Σεk) : ẋ(t) = Ãx(t) + Bεω̄(t)

z(t) = C̃εx(t) + Dεω̄(t)

where C̃T
ε = [ε−1ẼT C̃T].

Consider the two closed-loop systems above and the desired result is readily obtained using Theorem

1. �

By Theorem 3, in order to solve the robustly dissipative control problem for uncertain system

(Σ∆s), we only need to solve that for (Σεs).

Theorem 4. There exists a state-feedback controller u(t) = Kx(t) for system (Σεs)such that the

resulting closed-system is strictly((
_

Q,
_

S,
_

R) − dissipative if and only if there exists a scalar µ > 0 and

matrices W ∈ Rn×n and 0 < X ∈ Rn×n such that












XAT+W TBT
1 +AX+B1W B−(CX+D12W )TS µH (EX+E2W )T (CX+D12W )TQ̄1/2

BT
−ST(CX+D12W ) −DTS−STD−R −µSTH1 ET

1 DTQ̄1/2

µHT
−µHT

1 S −µI µJT µHT
1 Q̄1/2

EX + E2W E1 µJ −µJ 0

Q̄1/2(CX + D12W ) Q̄1/2D µQ̄1/2H1 0 −I













<0

(6)

Moreover, if X∗, W ∗ and µ∗ is a solution to (6), u(t) = W ∗(X∗)−1x(t) is a desired controller.

Proof. (Similar to the proof of Theorem 2, it is omitted.) �

4.2 Dynamic output feedback design

Consider the following system

(Σ∆f ) : ẋ = A∆x(t) + B∆ω(t) + B1∆u(t), x(0) = 0

z(t) = C∆x(t) + D∆ω(t) + D12∆u(t)

y(t) = C1∆x(t) + D21∆ω(t) + D22∆u(t)
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where y(t) ∈ Rr is the measured output

[C1∆ D21∆ D22∆] = [C1 D21 D22] − H2∆(t)[E E1 E2]

H2, C1, D21 and D22 are known matrices, and the rest matrices are the same in (Σ∆s).

In this section, we will address the robustly dissipative control problem via output feedback, that

is, design of a dynamic output feedback controller of the form

(Σf ) : ξ̇(t) = F0ξ(t) + G0y(t)

u(t) = K0ξ(t)

for (Σ∆f ) such that the resulting closed-loop system is robustly strict(Q,S, R) − dissipative.

Similar to the case of state feedback design, an auxiliary system related to (Σ∆f ) is constructed

(Σεf ) ẋ(t) = Ax(t) + Bεω̄(t) + B1u(t)

z(t) = Cεx(t) + Dεω̄(t) + D1εu(t)

y(t) = C1x(t) + D2εω̄(t) + D22u(t)

where D2ε = [D21 εH2], and the other matrices are defined as in (Σεs).

The following theorem gives the main result of this paper.

Theorem 5. Dynamic output feedback controller (Σf ) for (Σ∆f ) achieves robustly strict(Q,S, R)−

dissipative if and only if the controller (Σf ) for (Σεf ) achieves strictly(
_

Q,
_

S,
_

R) − dissipative for some

ε > 0.

Proof. On the one hand, the closed-loop system of (Σ∆f ) together with (Σf ) is

(Σ∆c) : η̇(t) = Ā∆η(t) + B̄∆ω(t), x(0) = 0

z(t) = C̄∆η(t) + D∆ω(t)

where

η(t) = [xT(t) ξ
T(t)]T, C̄∆ = C̄ − H1∆(t)Ē, C̄ = [C D12K0]

Ē = [E E2K0], [Ā∆ B̄∆] = [Ā B̄] − H̄∆(t)[Ē E1]

Ā =

[

A B1K0

G0C1 F0 + G0D22K0

]

, B̄ =

[

B

G0D21

]

, H̄ =

[

H

G0H2

]

on the other hand, the closed-loop system composed of (Σεf ) and (Σf ) is

(Σεc) : η̇(t) = Āη(t) + B̄εω̄(t), x(0) = 0

z(t) = C̄εη(t) + Dεω(t)

where B̄ε = [B̄ εH̄], C̄T
ε = [ε−1ĒT C̄T].

For systems (Σ∆c) and (Σεc) using Theorem 1, the desired result is readily obtained. �

Theorem 5 provides necessary and sufficient conditions for robustly dissipative control problems

via output feedback. From Theorem 5 together with Theorem 3, it can be concluded that robustly

dissipative control problems can be converted to those without uncertainties.

5 Conclusions

In this paper we have studied strictly quadratic dissipative analysis and control problems for a class

of uncertain systems. Necessary and sufficient conditions have been obtained for the uncertain systems

to be robustly strict quadratic dissipative. It has been shown that robust strict quadratic dissipative

control problems for the uncertain systems can be reduced to those for some related systems without

uncertainties. The latter can be solved using an LMI approach. As a byproduct, it has been shown that

strictly quadratic disspativeness of a linear system is equivalent to extended strictly positive realness of

a related system. By the equivalence, strictly quadratic disspativeness characterization of linear systems

has been derived. The proof, compared with that of [8], is simple.
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