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Abstract This paper deals with a general class of optimization problems in robust control with
given expectation value of performance index, which can be transformed into the problem of matrix
approximation with matrix inequalities constraints. Theorem for existence and the uniqueness of the
solutions of matrix approximation with linear matrix inequalities (LMIs) constraints is presented and
algorithms for solving the problems of matrix approximation with matrix inequalities constraints are
given based on the fact that such problems can be converted into the generalized eigenvalue problem
(GEVP) of LMI. Examples are given to illustrate the main results of the paper.

Key words Robust control, matrix approximation, uncertainty, LMI, GEVP

1 Introduction

The main assignment of the control theory is to design a controller for a given object by taking into

account the limitation of practical realization to ensure that the whole system meet the performance

index determined by the practical requirement. In the classical control theory, there are developed

theories for stability and optimal control of linear systems. However, in practical systems there exist

unavoidable uncertainties and disturbances and it is hard to use a precise mathematical model to

describe a practical control object. In the past few years, robust control issues dealing with system

parameter uncertainties and external disturbances have attracted more and more research interests[1,2].

When studying an uncertain control object in the engineering practice, the controller design is

always implemented according to the performance index of an uncertainty-free system or an expected

performance index which meets the practical requirement, so that the whole system performance ap-

proximates the performance index of the uncertainty-free system or the expected performance index as

close as possible. In the optimal control theory, although the optimal controller can ensure the minimum

of the performance index, it does not have good robustness. On the other hand, in the engineering

practice, not all system designs pursue the minimal value of the performance index. In some cases, the

system performance index is determined by the practical requirement and the controller should be de-

signed in such a way that the system performance can approximate the given index as close as possible.

These problems can be reduced to the matrix approximation with the matrix inequality constraints. In

recent years, many advances in linear matrix inequalities and algorithms for solving nonlinear matrix

inequalities have been reported. However, there are few studies on applications of matrix approximation

with LMI constraints in control system design. Therefore, studies on problem of matrix approximation

with LMI constraints has not only theoretical interests but also applied significance.

In this paper, we start from some basic problems in the robust control theory and study those

problems using the method of matrix approximation with LMI constraints. Furthermore, we study

the feasibility of the matrix approximation problem and present the optimization algorithm for the

problem of matrix approximation with LMI constraints or some specific nonlinear matrix inequalities

constraints.

2 Matrix approximation with constraints of LMI

Consider the following problem of matrix approximation with LMI constraints.

Problem 1. min
P,M1,···,Mr

‖P − P0‖, s.t. L(P, M1, · · · , Mr) 6 0
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where ‖ · ‖ denotes the F−norm(‖ A ‖= [trace(ATA)]
1

2 ) or 2−norm (‖ A ‖= [λmax(A
TA)]

1

2 ), L(P, M1,

· · · , Mr) 6 0 is an LMI with respect to matrix variable P ∈ Rn×n. Mi ∈ Γi(i = 1, 2, · · · , r) are unknown

real parameter matrices of appropriate dimensions. Γi is a bounded convex set and P0 ∈ Rn×n is a

given real matrix.

First let us introduce a fundamental theorem which gives the existence conditions of a solution to

Problem 1.

Theorem 1. (The existence and uniqueness theorem) There exists a minimal solution to

optimization Problem 1 if there exists a feasible solution to L(P, M1, · · · , Mr) 6 0. Furthermore, if the

matrix norm is F− norm, there exists a unique minimal solution to Problem 1.

Proof. Denote the solution set to L(P, M1, · · · , Mr) 6 0 as

Γ = {(P, M1, · · · , Mr)| L(P, M1, · · · , Mr) 6 0}

Since there exists a feasible solution to L(P, M1, · · · , Mr) 6 0, we have Γ 6= ∅. Denote

Ω1 = {P | (P, M1, · · · , Mr) ∈ Γ}

Then, Ω1 ⊂ Rn×n is a non-null closed subset. For any P1 ∈ Ω1, Ω2 = {P | ‖ P − P0 ‖6‖ P1 − P0 ‖} ⊂

Rn×n is bounded closed convex set. Thus, Ω = Ω1

⋂

Ω2 ⊂ Rn×n is a non-null bounded closed convex

set.

Consider the matrix function f(P ) =‖ P − P0 ‖. Since the matrix norm ‖ · ‖ is the continuous

convex function of matrix variable, Problem 1 has minimal solution.

In particular, if f(P ) =‖ P−P0 ‖F , then f(P ) is a strictly convex continuous function of the matrix

variable P . This deduces that for any λ ∈ (0, 1), P1, P2 ∈ Rn×n, P1 6= P2, the following inequality holds

f(λP1 + (1 + λ)P2) < λf(P1) + (1 − λ)f(P2)

Since the strictly convex set has a unique minimal solution on a bounded close convex set, the theorem

is proved. �

Remark 1. In general, for strict LMI L(P, M1, · · · , Mr) < 0, Γ = {(P, M1, · · · , Mr) | L(P, M1,

· · · , Mr) < 0} is an open set. Thus Ω1 = {P | (P, M1, · · · , Mr) ∈ Γ} is an open set. f(P ) have

infimum but does not necessarily have minimum. In this case, we can replace Ω1, with the set Ω
∗ =

{P | L(P, M1, · · · , Mr) 6 −εI} (where ε > 0 is a sufficiently small real number). Although this method

provides an approximation of the minimum of f(P ), it is suitable for finding the feasible solution a the

sub-optimal problem. Moreover, we can use ε → 0 to approximate the infimum.

Proposition 1. 1) If there exist matrices M1, M2, · · · , Mr such that L(P0, M1, · · · , Mr) 6 0, the

optimal solution of Problem 1 is P0 and min
P,M1,···,Mr

‖P − P0‖ = 0.

2) If there do not exist matrices M1, M2, · · · , Mr such that L(P0, M1, · · · , Mr) 6 0, then

min
P,M1,···,Mr

‖P − P0‖ > 0.

Now, let us discuss the algorithm for the eigenvalue problem with LMI constraints.

When the matrix norm is 2-norm(the matrix norm is assumed to be 2-norm in the following

discussion), Problem 1 is equivalent to min
P,M1,···,Mr

λ s.t. ‖P −P0‖ 6 λ and L(P, M1, · · · , Mr) 6 0 and

the matrix inequality ‖P − P0‖ 6 λ is equivalent to

(P − P0)
T(P − P0) 6 λ

2
I (1)

Since inequality (1) is equivalent to

[

λI (P − P0)
T

P − P0 λI

]

> 0 (2)

the optimization Problem 1 can be reduced to the following eigenvalue problem.

Problem 2. min
P,M1,···,Mr

λ, s.t.

[

O (P − P0)
T

P − P0 0

]

6

[

λI O

O λI

]

, L(P, M1, · · · , Mr) 6 0

which is a standard generalized eigenvalue problem and can be solved using the gevp solver in LMI

toolbox[3,4].



354 ACTA AUTOMATICA SINICA Vol. 31

3 Applications in control problems

3.1 Robust stability

Consider the following uncertain system

ẋ(t) = [A + ∆A(t)]x(t) (3)

where A ∈ Rn×n is a real matrix, ∆A(t) ∈ Rn×n is the time-varying uncertain matrix.

Define the performance index function as

J(x0) =

∫

∞

0

x
T(t)Qx(t)dt (4)

where Q ∈ Rn×n is a positive definite matrix.

For the uncertainty-free case of System (3), suppose P0 is the unique positive definite solution of

Lyapunov equation

A
T
P + PA + Q = 0 (5)

Since Q can be selected properly, we choose J0(x0) = x
T
0 P0x0 as the performance index which

describes the disturbance process of the system. But xTP0x cannot definitely be used as a Lyapunov

function for system family (3). Then our problem is to find a positive definite matrix P such that the

system is robustly stable and the corresponding x
T
0 Px0 approximates the system performance index

x
T
0 P0x0 as close as possible, i.e., to find positive definite matrices P, Q satisfying

(A + ∆A)TP + P (A + ∆A) + Q 6 0 (6)

and minimizing ‖ P−P0 ‖. In dynamic systems, since the components of x can have different attenuation

request, we use a positive definite matrix W to weight each component. But x
TWx cannot be used

as a Lyapunov function even for an uncertainty-free system. Thus we turn to find a positive definite

matrix P satisfying (6) and minimizing ‖ P − W ‖.

Consider the following optimization problem.

Problem 3. min
P

‖ P − P0 ‖, s.t. (6).

If the uncertain parameters belong to an interval matrix, i.e., ∆A(t) ∈ G[R, S]
4
= {∆A | R 6

∆A(t) 6 S} and we denote H [R, S] = {A1, A2, . . . , Ak, k = 2n2

} as the vertex set of the interval matrix

G[R, S], then Problem 3 is recast into

min
P

‖ P − P0 ‖

s.t. (A + Ai)
T
P + P (A + Ai) + Q 6 0, i = 1, 2, . . . , k

which is a standard matrix approximation problem with the LMI constraints. From the results of the

above section, this problem can be reduced to the following generalized eigenvalue problem

min
P

λ

s.t.

[

O P − P0

P − P0 O

]

6

[

λI O

O λI

]

(A + Ai)
T
P + P (A + Ai) + Q 6 0, i = 1, 2, . . . , k

If the uncertain parameters satisfy

∆A(t) = DF (t)E, F
T(t)F (t) 6 I (7)

the matrix inequality (6) is equivalent to that there exists a real number ε > 0 such that the Riccati

inequality (see [7])

A
T
P + PA + ε

−1
PDD

T
P + εE

T
E + Q 6 0 (8)

holds. Then Problem 3 becomes

min
P

‖ P − P0 ‖, s.t. (8)
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which can be solved through the following generalized eigenvalue problem

min
ε,P

λ

s.t.

[

O P − P0

P − P0 O

]

6

[

λI O

O λI

]

[

ATP + PA + εETE + Q PD

DTP −εI

]

6 0

3.2 Quadratic robust sub-optimal control

Consider the sub-optimal control problem of the following uncertain linear system[2]

{

ẋ(t) = [A + ∆A(t)]x(t) + Bu(t)

y(t) = Cx(t)
(9)

with the performance index function

J(u, x0) =

∫

∞

0

[xT(t)CT
Cx(t) + u

T(t)Ru(t)]dt (10)

where x(t) ∈ Rn is state vector, u(t) ∈ Rm is the control input, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n are

given matrices, ∆A ∈ Rn×n are time-varying uncertain parameter matrices satisfying (7).

Without loss of generality, we suppose (A, B) is stabilizable and (A, C) is observable.

For System (9), the system performance index depends on ∆A(t). Even if ∆A(t) is time-invariant,

the system cannot be guaranteed to be stabilizable or observable. However, on the assumption that the

system is robustly stable, the index (10) is still valid. Thus, here we only discuss the robust sub-optimal

control problem with the index (10). Specifically, we will study the following problems:

Problem 4. Given the expected upper bound of the index (10) J0(x0) = xT
0 P0x0, design a state

feedback controller to robustly stabilize System (9) and minimize

|J(u, x0) − J0(x0)|

Definition 1. If there exists state feedback control law u∗(t) = K∗
x(t) such that System (9) is

robustly stable and

|J(u∗
, x0) − J0(x0)| = min

u
|J(u, x0) − J0(x0)|

then we call u∗(t) = K∗
x(t) the robust sub-optimal objective control.

As is known, for the optimal state feedback controller of the uncertainty-free linear system[8]

{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(11)

the index function (10) given by

u(t) = −R
−1

B
T
P0x(t) (12)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n are given matrices, R ∈ Rm×m is a positive definite matrix and

P0 is a positive definite solution to the following Riccati equation

A
T
P + PA − PBR

−1
B

T
P + C

T
C = 0 (13)

Then the optimal value of the performance index for the uncertainty-free system is J(u, x0) = xT
0 P0x0.

Remark 2. It can be seen from Definition 1 that when we take the performance index of the

optimal control for uncertainty-free system as the control objective, the robust optimal objective control

is the general robust optimal control. When we take the minimization of the performance index as the

control objective, i.e., P0 = 0, the robust sub-optimal objective control is reduced to the guaranteed

cost control[9∼13]. So robust optimal (sub-optimal) objective control is a more general concept.

In the following we discuss the design problem of the robust sub-optimal objective controller. First

we give a basic result.
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Theorem 2. If there exist positive definite matrix P , matrix K and a real number ε > 0 such

that

A
T
P + PA + K

T
B

T
P + PBK + K

T
R

−1
K + C

T
C + εPDD

T
P + ε

−1
E

T
E < 0 (14)

then the uncertain system (9) is robustly quadratically stable with the state feedback controller u(t) =

Kx(t) and the system performance index satisfies J(u, x0) < xT
0 Px0.

Proof. The closed loop system with the state feedback controller u(t) = Kx(t) is

ẋ(t) = [A + ∆A(t) + BK]x(t) (15)

Define the Lyapunov function as V (x(t)) = x
T(t)Px(t); then the derivative of V (x(t)) along the

trajectory of System (15) is

V̇ (x) =x
T(t)[AT

P + PA + K
T
B

T
P + PBK + ∆A

T
P + P∆A]x(t) = x

T(t)[AT
P + PA + K

T
B

T
P+

PBK + C
T
C + K

T
RK + ∆A

T
P + P∆A]x(t) − x

T(t)[CT
C + K

T
RK]x(t)

Thus when

A
T
P + PA + K

T
B

T
P + PBK + C

T
C + K

T
RK + ∆A

T
P + P∆A < 0 (16)

we have

V̇ (x) 6 −x
T(t)[CT

C + K
T
RK]x(t) < 0 (17)

and the closed loop system (15) is robustly stable. Inequality (16) is equivalent to that there exists

ε > 0 such that (14) holds (see [7]).

Integrating both sides of (17) from 0 to T yields

V (x(T ))− V (x0) 6 −

∫ T

0

[CT
C + K

T
RK]dt (18)

Since the closed loop system (15) is asymptotically stable, we have

lim
t−→∞

x(T ) = 0, lim
t−→∞

V (x(T )) = 0

Then

J(u, x0) =

∫

∞

0

[xT(t)CT
Cx(t) + u

T(t)Ru(t)]dt 6 V (x0) = x
T
0 Px(0)

which completes the proof. �

From Theorem 2 we know

|J(u, x0) − J0(x0)| 6 |xT
0 Px0 − x

T
0 P0x0| = |xT

0 (P − P0)x0| 6‖ x0 ‖2‖ P − P0 ‖

Then Problem 4 can be reduced to the optimization problem of min
P,K

‖ P − P0 ‖ s.t.(14).

By virtue of Schur complement formula, the matrix inequality (14) is equivalent to









ATP + PA + KTBTP + PBK + εPDDTP KT ET CT

K −R O O

E O −εI O

C O O −I









< 0 (19)

Pre- and postmultiplying both sides of the above inequality by Diag[ P−1 I I I ] and letting

P−1 = X, KP = W , yield









XAT + AX + W TBT + BW + εDDT W T XET XCT

W −R O O

EX O −εI O

CX O O −I









< 0 (20)

which can be solved through the following eigenvalue problem.

Problem 5. min
ε,X,W

λ, s.t.

[

O X − X0

X − X0 O

]

<

[

λI O

O λI

]

, (20)
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Theorem 3. If there exist real number ε, positive definite matrix P such that the following

Riccati inequality

A
T
P + PA − PBR

−1
B

T
P + C

T
C + εPDD

T
P + ε

−1
E

T
E < 0 (21)

holds, then the uncertain system (9) is robustly quadratically stable with the state feedback controller

(12) and the performance index (10) satisfies J(u, x0) < xT
0 Px0.

Proof. Inequality (21) can be derived by substituting K = −R−1BTP into (14).

Then Problem 4 can be reduced to the matrix approximation problem of min
P,K

‖ P − P0 ‖ s.t.(21),

which can be solved through the following generalized eigenvalue problem.

Problem 6.

min
ε,X

λ

s.t.

[

O X − X0

X − X0 O

]

<

[

λI O

O λI

]





XAT + AX − BR−1BT + εDDT XET XCT

EX −εI O

CX O −I



 < 0

4 Numerical examples

Example 1. Consider the system ẋ(t) = Aix(t) (i = 1, 2, 3), where A1 =

[

−1 2

1 −3

]

, A2 =
[

−0.8 1.5

1.3 −2.7

]

, A3 =

[

−1.4 0.9

0.7 −2.0

]

. Our problem is to find a positive definite matrix P which satisfies

A
T
i P + PAi < 0, i = 1, 2, 3

and minimizes ‖ P − P0 ‖, where P0 is a given symmetric matrix. This problem can be translated into

the following generalized eigenvalue minimization problem

min
P

λ

s.t.

[

O P − P0

P − P0 O

]

<

[

λI O

O λI

]

A
T
i P + PAi < 0, i = 1, 2, . . . , k

and the minimal solution can be obtained by solving the above generalized eigenvalue minimization

problem using the gevp solver in LMI Toolbox.

Let P0 =

[

3 1.5

1.5 1.5

]

; then P0 is a feasible solution to (1), Thus, the minimal solution P = P0. Let

P0 =

[

3 2

2 2

]

. We can obtain the minimal solution P =

[

3.0958 1.8814

1.8814 1.9042

]

. In this case, ‖ P − P0 ‖<

0.1524.

Example 2. Consider the optimal robust control problem (9) with the performance index (10),

where ∆A(t) = DF (t)E, FTF (t) 6 I, A =

[

−2 −1

0

]

, B =

[

1

1

]

, C = [1 1], R = 1, D =
[

0.4 1

1 0.4

]

, E =

[

0.3 0.3

0.3 0.3

]

. We can obtain the optimization solution of the uncertainty-free system

P0 =

[

0.2271 0.0757

0.0757 2.2271

]

. Solving Problem 6, we obtain the minimal solution as X =

[

1.7745 −0.0069

−0.0069 0.2090

]

,

ε = 0.4158. Thus, P =

[

1.7745 −0.0069

−0.0069 0.2090

]

, and the optimization control is u(t)=[−0.5822 − 4.8038]

x(t). In this case, ‖ P − P0 ‖< 2.5595.
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5 Conclusions

In this paper we study some basic robust control issues such as the roust stability, robust optimal

control, etc., which can be transformed into the problem of matrix approximation with LMI constraints.

The existence conditions for the unique optimal solution to such problems are presented, as well as the

algorithms for matrix approximation with matrix inequalities. It is shown that the matrix approxima-

tion with LMI constraints or matrix inequalities can be reduced to the generalized eigenvalue problem

of LMI.
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