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Abstract Since the state of hybrid systems is determined by interacting continuous and discrete
dynamics, the state estimation of hybrid systems becomes a challenging problem. It is more com-
plicated when the discrete mode transition information is not available, and the modes of hybrid
systems are nonlinear stochastic dynamic systems. To address this problem, this paper proposes a
novel hybrid strong tracking filter (HSTF) for state estimation of a class of hybrid nonlinear stochas-
tic systems with unknown mode transition, the method for designing HSTF is presented. The HSTF
can estimate the continuous state and discrete mode accurately with unknown mode transition in-
formation, and the estimation of hybrid states is robust against the initial state. Simulation results
illustrate the effectiveness of the proposed approach.
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1 Introduction

Hybrid systems have been used to describe complex dynamic systems that involve both conti-

nuous and discrete states. Recently, the research of hybrid systems has become an intensive study

domain in both control and computer science communities[1]. The state estimation of hybrid system

has become a crucial and challenging research topic because it needs estimating the discrete mode and

the continuous state simultaneously. Several approaches have been introduced for the hybrid system

state estimation recently[2∼7]. Some approaches require that the mode transition satisfy some stochastic

rule, such as Markov chain, or the mode transition information be available, such as the condition of

the mode transition and the successor mode.

Usually, hybrid system mode transitions are caused either by the interior states or the external

events or inputs. In fact, the mode transition information is often not available, including: 1) the tran-

sition mechanism is unknown; 2) the transition instant is unknown. For example, the mode transitions

caused by the exterior events are unpredictable and its probability distribution is unknown. In addition,

the mode transitions caused by the interior states usually do not accord with the certain probability

distribution (e.g. a Markov chain). The state estimation of the hybrid system becomes more compli-

cated when the discrete mode transition information is not available and the modes of hybrid systems

are nonlinear stochastic dynamic systems. To address this problem, this paper proposes a novel hybrid

strong tracking filter (HSTF) for the state estimation of a class of hybrid nonlinear stochastic systems

with unknown mode transitions.

2 Problem formulation

The system considered in this paper is a class of hybrid nonlinear stochastic systems, which

involves both continuous states and discrete modes. The discrete modes are described by a finite set.

The continuous state evolves according to a nonlinear stochastic differential equation that depends on

the discrete modes, and mode transitions may occur when certain conditions are satisfied. The hybrid

system has two kinds of mode transitions: 1) the controlled mode transitions trigged by external events

or inputs; 2) the autonomous mode transitions trigged by internal continuous states. Moreover, we

assume that the mode transitions do not reset the continuous states.

Definition 1. A class of hybrid nonlinear stochastic systems is described as follows:

HS = (Q,X, U, Y, f, h, g, Tc, Ts) (1)
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where Q = {1, 2, · · · , nq} is a finite set of discrete modes, and nq = |Q|; X ⊆ R
ns is the continuous

state space; U ⊆ R
nu is the continuous input space; Y ⊆ R

ny is the continuous output space; f :

R
nu × R

nx × Q → R
nx , h : R

ns × Q → R
ny and g : R

nv × Q → R
nx specify the continuous evolution

of the hybrid system; Tc and Ts are the finite set of controlled mode transitions and autonomous mode

transitions, respectively. In this paper, we address the state estimation of hybrid system in the presence

of unknown mode transitions, so that Tc and Ts are unknown.

For q(k + 1) = i, i ∈ Q, the continuous dynamics is described by nonlinear stochastic difference

equations:
{

x(k + 1) = fi(k, u(k), x(k)) + gi(k)ξ(k)

y(k + 1) = hi(k + 1, x(k + 1)) + ω(k + 1)
(2)

where fi and hi are nonlinear functions and are assumed to have continuous derivatives with respect

to the continuous x; gi is the known process noise matrices; fi, hi and gi depend on the discrete mode

i ∈ Q. The process noise ξ(k) ∈ R
nξ and the measurement noise ω(k) ∈ R

nω are independent Gaussian

white sequence with the statistics:



















E{ξ(k)} = E{ω(k)} = 0, k > 0

E{ξ(k)ξT(j)} = Rξ(k)δk,j , ∀k, j > 0

E{ω(k)ωT(j)} = Rω(k)δk,j , ∀k, j > 0

E{ξ(k)ωT(j)} = 0, ∀k, j > 0

(3)

x(0) is a random variable that is independent of ξ(k) and ω(k), with the statistics:

{

Ex(0) = x0

E{(x(0) − x0)(x(0) − x0)
T} = P0

(4)

Problem 1. The state estimation of hybrid system in the presence of unknown mode transitions:

Consider the hybrid system described by definition 1 in the presence of unknown mode transitions,

the discrete mode set Q = {1, 2, · · · , nq} is known, and for each mode i ∈ Q, fi, gi and hi are known.

Given the sequence of continuous inputs {u(k)} and the sequence of continuous outputs {y(k)}, the

objective now is to estimate the discrete mode q(k) and the continuous state x(k).

The main challenging aspects of this problem are: 1) The discrete mode transition information is

not available, and the available information is the continuous input and output; 2) The mode transitions

include the autonomous mode transitions trigged by the continuous state and the controlled mode

transitions trigged by unknown external events; 3) For each mode, it is a nonlinear stochastic system.

3 Hybrid strong tracking filter

In this section, a novel hybrid strong tracking filter (HSTF) is proposed for the state estimation

of the class of hybrid nonlinear stochastic systems (1) ∼ (4) with unknown mode transitions, which

combines the strong tracking filter[8] and Bayesian approach. The HSTF is introduced as follows:

Let Y k , {y(0), y(1), · · · , y(k)}; the hybrid system continuous state estimation is:

x̂(k + 1|k + 1) , E[x(k + 1)|Y k+1] (5)

From (5), we have

x̂(k + 1|k + 1) = E[x(k + 1)|Y k+1]

nq
∑

i=1

Pr(q(k + 1) = i|Y k+1)E[x(k + 1)|Y k+1
, q(k + 1) = i] (6)

where Pr(q(k + 1) = i|Y k+1) denotes the posterior probability distribution of the discrete mode, which

will be used for the discrete mode estimation.

Let x̂i(k+1|k+1) denote the mode conditional estimation of the continuous states under q(k+1) =

i,∀i ∈ {1, · · · , nq}:

x̂i(k+1|k+1) , E[x(k+1)|Y k+1
, q(k+1) = i] =

∫

x(k+1)p(x(k+1)|Y k+1
, q(k+1) = i)dx(k+1) (7)
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Corresponding to q(k + 1) = i,∀i ∈ {1, · · · , nq}, the continuous dynamics is described as follows:

{

x(k + 1) = fi(k, u(k), x(k)) + gi(k)ξ(k)

y(k + 1) = hi(k + 1, x(k + 1)) + ω(k + 1)
(8)

Thus the mode conditional estimation of the continuous states can be computed by

x̂i(k + 1|k + 1) = x̂i(k + 1|k) + Ki(k + 1)γi(k + 1) (9)

where x̂i(k + 1|k) , E[x(k + 1)|q(k + 1) = i, Y k] denotes the mode conditional prediction of the

continuous states:

x̂i(k + 1|k) = fi(k, u(k), x̂(k|k)) (10)

Ki(k + 1) is the mode conditional gain:

Ki(k + 1) =
P (k + 1|k)h̄T

i (k + 1, x̂(k + 1|k))

h̄i(k + 1, x̂(k + 1|k))P (k + 1|k)h̄T
i (k + 1, x̂(k + 1|k)) + Rω(k + 1)

(11)

where

h̄i(k + 1, x̂(k + 1|k)) =
∂hi(k + 1, x(k + 1))

∂x

∣

∣

∣

∣

x(k + 1) = x̂(k + 1|k)

(12)

In (11) and (12), x̂(k + 1|k) is the continuous state prediction:

x̂(k + 1|k) , E[x(k + 1)|Y k] (13)

P (k + 1|k) is the covariance matrix of the prediction error:

P (k + 1|k) = E[(x(k + 1) − x̂(k + 1|k))(x(k + 1) − x̂(k + 1|k))T|Y k] (14)

From (13), we have

x̂(k + 1|k) =

nq
∑

i=1

Pr(q(k + 1) = i|Y k)E[x(k + 1)|Y k
, q(k + 1) = i] =

nq
∑

i=1

Pr(q(k + 1) = i|Y k)x̂i(k + 1|k)

(15)

where Pr(q(k + 1) = i|Y k) is the prediction probability of the discrete mode:

Pr(q(k + 1) = i|Y k) =

nq
∑

j=1

Pr(q(k + 1) = i|Y k
, q(k) = j)Pr(q(k) = j|Y k) (16)

where

Pr(q(k + 1) = i|Y k
, q(k) = j) =

Pr(Y k|q(k + 1) = i, q(k) = j)Pr(q(k + 1) = i|q(k) = j)

Pr(Y k|q(k) = j)
(17)

Because the observation sequence Y k is uncorrelated with q(k + 1),

Pr(Y k|q(k + 1) = i, q(k) = j) = Pr(Y k|q(k) = j) (18)

Since the discrete mode transition information is not available, we assume that

Pr(q(k + 1) = i|q(k) = j) =
1

nq

(19)

Substituting (17) ∼ (19) into (16) yields

Pr(q(k + 1) = i|Y k) =
1

nq

(20)

Substituting (10), (20) into (15), we have

x̂(k + 1|k) =
1

nq

nq
∑

i=1

fi(k, u(k), x̂(k|k)) (21)
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From (14), we obtain

P (k + 1|k) = E[(x(k + 1) − x̂(k + 1|k))(x(k + 1) − x̂(k + 1|k))T|Y k] =
nq
∑

i=1

Pr(q(k + 1) = i|Y k)E[(x(k + 1) − x̂(k + 1|k))(x(k + 1) − x̂(k + 1|k))T|Y k
, q(k + 1) = i] =

1

nq

nq
∑

i=1

E[(x(k + 1) − x̂i(k + 1|k) + x̂i(k + 1|k) − x̂(k + 1|k)) · · · (x(k + 1)−

x̂i(k + 1|k) + x̂i(k + 1|k) − x̂(k + 1|k))T|Y k
, q(k + 1) = i] =

1

nq

nq
∑

i=1

(E[(x(k + 1) − x̂i(k + 1|k))(x(k + 1) − x̂i(k + 1|k))T|Y k
, q(k + 1) = i]+

(x̂i(k + 1|k) − x̂(k + 1|k))(x̂i(k + 1|k) − x̂(k + 1|k))T) =

=
1

nq

nq
∑

i=1

(Pi(k + 1|k) + (x̂i(k + 1|k) − x̂(k + 1|k))(x̂i(k + 1|k) − x̂(k + 1|k))T) (22)

where Pi(k + 1|k) is the covariance matrix of the mode conditional prediction error:

Pi(k + 1|k) , E[(x(k + 1) − x̂i(k + 1|k))(x(k + 1) − x̂i(k + 1|k))T|Y k
, q(k + 1) = i] (23)

Pi(k + 1|k) can be computed by

Pi(k + 1|k) = λi(k + 1)f̄i(k, u(k), x̂(k|k))P (k|k)f̄T
i (k, u(k), x̂(k|k)) + gi(k)Rξ(k)gT

i (k) (24)

where

f̄i(k, u(k), x̂(k|k)) =
∂fi(k, u(k), x(k))

∂x

∣

∣

∣

∣

x(k) = x̂(k|k)

(25)

λi(k + 1) > 1 is the time-varying sub-optimal fading factor, which makes the filter have strong

robustness against the model uncertainty and strong tracking ability to the suddenly changing states.

It can be determined as follows.

λi(k + 1) =

{

λ0
i λ0

i > 1

1, λ0
i < 1

(26)

where

λ
0
i =

tr[Ni(k + 1)]

tr[Mi(k + 1)]
(27)

Mi(k + 1) = h̄i(k + 1, x̂(k + 1|k))f̄i(k, u(k), x̂(k|k))P (k|k)·
f̄

T
i (k, u(k), x̂(k|k))h̄T

i (k + 1, x̂(k + 1|k)) (28)

Ni(k + 1) = Vi(k + 1) − h̄i(k + 1, x̂(k + 1|k))gi(k)Rξ(k)gT
i (k)·

h̄
T
i (k + 1, x̂(k + 1|k)) − βRω(k + 1) (29)

where in (29) β > 1 is the pre-selected softening factor, which makes the estimate more smooth.

Vi(k + 1) =







γi(1)γ
T
i (1), k = 0

ρS(k) + γ i(k + 1)γT
i (k + 1)

1 + ρ
, k > 0

(30)

In (30), 0 < ρ 6 1 is the pre-selected forgetting factor. Usually, let ρ = 0.95. S(k) is the covariance

matrix of the output error and can be computed by (38) at the last step.

γi(k + 1) is the mode conditional residual:

γi(k + 1) = y(k + 1) − ŷi(k + 1) = y(k + 1) − hi(k + 1, fi(k, u(k), x̂(k + 1|k))) (31)

From (10), (11) and (31), we have the mode conditional estimation of the continuous states

x̂i(k + 1|k + 1) under q(k + 1) = i,∀i ∈ {1, · · · , nq}.



No. 3 WANG Wen-Hui et al.: State Estimation of a Class of Hybrid Systems in the · · · 455

Pi(k +1|k+1) is the covariance matrix of the mode conditional estimation error of the continuous

states:

Pi(k + 1|k + 1) = [I − Ki(k + 1)h̄i(k + 1, x̂(k + 1|k))]P (k + 1|k) (32)

In (6), Pr(q(k + 1) = i|Y k+1) can be computed by

Pr(q(k + 1) = i|Y k+1) =
L(y(k + 1)|q(k + 1) = i, Y k)Pr(q(k + 1) = i|Y k)

nq
∑

j=1

L(y(k + 1)|q(k + 1) = j, Y
k)Pr(q(k + 1) = j|Y k)

(33)

where L(y(k + 1)|q(k + 1) = i, Y k) is the likelihood function of mode i:

L(y(k + 1)|q(k + 1) = i, Y
k) , Norm[γi(k + 1); 0, Si(k + 1)] (34)

where Norm[γi(k+1); 0, Si(k+1)] is the probability density of random variable with normal distribution

whose mean is zero and covariance is Si(k + 1) when the value is γi(k + 1). Si(k + 1) is the covariance

matrix of the mode conditional residual of the output:

Si(k + 1) =E[γ i(k + 1)γT
i (k + 1)|q(k + 1) = i] ≈

h̄i(k + 1, x̂(k + 1|k))Pi(k + 1|k)h̄T
i (k + 1, x̂(k + 1|k)) + Rw(k + 1) (35)

Remark 1. In (35), Pi(k + 1|k) replaces P (k + 1|k) in order to increase the mode distinguish

ability.

So the continuous state estimation of the hybrid system is

x̂(k + 1|k + 1) =

nq
∑

i=1

Pr(q(k + 1) = i|Y k+1)x̂i(k + 1|k + 1) (36)

The covariance matrix of the estimation error of the continuous state is

P (k + 1|k + 1) = E[(x(k + 1) − x̂(k + 1|k))(x(k + 1) − x̂(k + 1|k))T|Y k+1] =
nq
∑

i=1

Pr(q(k + 1) = i|Y k+1)E[(x(k + 1) − x̂(k + 1|k + 1))(x(k + 1) − x̂(k + 1|k + 1))T|Y k+1
, q(k+

1) = i] =

nq
∑

i=1

Pr(q(k + 1) = i|Y k+1)E[(x(k + 1) − x̂i(k + 1|k + 1) + x̂i(k + 1|k + 1)−

x̂(k + 1|k + 1)) · (x(k + 1) − x̂i(k + 1|k + 1) + x̂i(k + 1|k + 1) − x̂(k + 1|k + 1))T|Y k+1
, q(k+

1) = i] =

nq
∑

i=1

Pr(q(k + 1) = i|Y k+1){E[(x(k + 1) − x̂i(k + 1|k + 1))(x(k + 1) − x̂i(k + 1|k+

1))T|Y k+1
, q(k + 1) = i] + (x̂i(k + 1 + k + 1) − x̂(k + 1|k + 1))(x̂i(k + 1|k + 1) − x̂(k + 1|k+

1))T} =

nq
∑

i=1

Pr(q(k + 1) = i|Y k+1){Pi(k + 1|k + 1) + (x̂i(k + 1|k + 1) − x̂(k + 1|k + 1))(x̂i(k+

1|k + 1) − x̂(k + 1|k + 1))T} (37)

The covariance matrix of the residual of the continuous output is

S(k + 1) =

nq
∑

i=1

Pr(q(k + 1) = i|Y k+1){Si(k + 1) + (ŷi(k + 1) − ŷ(k + 1))(ŷi(k + 1) − ŷ(k + 1))T} (38)

where

ŷ(k + 1) =

nq
∑

i=1

Pr(q(k + 1) = i|Y k+1)ŷi(k + 1) (39)
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From (33), we get the posterior probability distribution of the discrete mode Pr(q(k+1) = i|Y k+1).

Based on the posterior probability distribution, the discrete mode estimation is

q̂(k + 1) =

{

i, ∃i ∈ Q, s.t. Pr(q(k + 1) = i|Y k+1) > θ

q̂(k), else
(40)

where 0.9 6 θ < 1 is a pre-selected mode threshold.

4 Simulation study

A hybrid three-tank system is described as in Fig. 1, which consists of three cylindrical tanks (T1,

T2, T3), an input pipe (P1), an output pipe (P2) and two connection pipes (P3, P4). For each pipe,

there is a valve (V1∼V4) that can be used to change the mode. The discrete mode set Q = {1, 2, 3}:
1) Mode 1: V1, V3 and V4 are open. V2 is closed; 2) Mode 2: V2, V3 and V4 are open. V1 is closed;

3) Mode 3: V1, V2 and V4 are open. V3 is closed.

Fig. 1 Hybrid three-tank

The hybrid system can be described by
{

x(k + 1) = fi(k, u(k), x(k)) + ξ(k)

y(k + 1) = hi(k + 1, x(k + 1)) + ω(k + 1)
, i ∈ {1, 2, 3} (41)

x = [x1, x2, x3]
T
, y = [y1, y2, y3]

T

f1(•) =









x1 − 1
A1

a3s3sgn(x1 − x3)
√

2g|x1 − x3| + 1
A1

u

x2 + 1
A2

a4s4sgn(x3 − x2)
√

2g|x3 − x2|
x3 + 1

A3
a3s3sgn(x1 − x3)

√

2g|x1 − x3| − 1
A3

a4s4sgn(x3 − x2)
√

2g|x3 − x2|









f2(•) =









x1 − 1
A2

a3s3sgn(x1 − x3)
√

2g|x1 − x3|
x2 + 1

A2
a4s4sgn(x3 − x2)

√

2g|x3 − x2| − 1
A2

a2s2

√
2gx2

x3 + 1
A3

a3s3sgn(x1 − x3)
√

2g|x1 − x3| − 1
A3

a4s4sgn(x3 − x2)
√

2g|x3 − x2









f3(•) =









x1 + 1
A1

u

x2 + 1
A2

a4s4sgn(x3 − x2)
√

2g|x3 − x2| − 1
A2

a2s2

√
2gx2

x3 − 1
A3

a4s4sgn(x3 − x2)
√

2g|x3 − x2









h1(k, x(k)) = I3 ×





x1(k)

x2(k)

x3(k)



 , h2(k, x(k)) = 2I3 ×





x1(k)

x2(k)

x3(k)



 , h3(k, x(k)) = 3I3 ×





x1(k)

x2(k)

x3(k)





where A is the section of each cylindrical tank (154cm2), si, i = 1 − 4 is the section of each pipe

(0.5cm2), ai, i = 1 − 4 is the adjust parameter (0.5), g=981cm/s2, these parameters are taken from

[8]. The sampling time is 1s. The process noise and measure noise are both Gaussian white sequences

with mean zero and variance 0.5. The initial state is x1(0) = 15cm, x2(0) = 10cm, and x3(0) = 10cm.

The input is u(k) = 20cm3, θ = 0.95. The system runs through three modes: Mode 1 is from 1s to

100s; Mode 2 is from 101s to 200s; Mode 3 is from 201s to 300s. For the HSTF, x̂(0|0) = [20, 5, 10]T,

P (0|0) = 100 × I3, Pr(q(0) = 2|Y 0) = 1, and Pr(q(0) = 1|Y 0) = Pr(q(0) = 3|Y 0) = 0 are selected.



No. 3 WANG Wen-Hui et al.: State Estimation of a Class of Hybrid Systems in the · · · 457

Fig. 2 and Fig. 3 show the simulation results. In Fig. 2, the left-hand side shows the actual and

estimated water levers and the right-hand shows the estimation error. Fig. 3 shows the estimation of

the discrete mode. The simulation results show that:

1) The HSTF can estimate the continuous state and discrete mode accurately with unknown mode

transition information;

2) The estimation of the continuous state is robust against the initial state errors;

3) The estimation of the discrete mode is robust against the wrong initial probability distribution

of the discrete mode.

Fig. 2 Continuous states estimation

Fig. 3 Discrete mode estimation

5 Conclusions

To address the state estimation of a class of hybrid nonlinear stochastic systems in the presence

of unknown mode transitions, a novel HSTF based on the STF and Bayesian approach is proposed.

The simulation results show the effectiveness of the HSFT and the HSFT is robust to the initial hybrid

states. The convergence of the HSTF will be studied in the future work.
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