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Abstract The paper is concerned with the robust control problems for exponential controlled closed

queuing networks (CCQNs) under uncertain routing probabilities. As the rows of some parameter

matrices such as infinitesimal generators may be dependent, we first transform the objective vector

under discounted-cost criteria into a weighed-average cost. Through the solution to Poisson equation,

i.e., Markov performance potentials, we then unify both discounted-cost and average-cost problems

to study, and derive the gradient formula of the new objective function with respect to the routing

probabilities. Some solution techniques are related for searching the optimal robust control policy.

Finally, a numerical example is presented and analyzed.
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1 Introduction

Many real-world discrete event dynamic systems (DEDSs) may be modeled as controlled closed

queuing networks (CCQNs), and can be solved by using Markov performance theory if the routing

probabilities are all deterministic and known[1,2]. For large-scale practical systems, the routing proba-

bilities may be unavailable or even slow-varying, and the decision-maker only knows their range. Then,

the optimization problem is to calculate the robust control policy, that is, to find the optimal policy

under the worst case. For Markov decision problems (MDPs) with independent uncertain transition

rates, a policy iteration approach for solving the robust control policy was introduced in [3], and the

potential-based policy iteration was developed in [4]. In CCQNs, the uncertainty of routing probabilities

will lead to the correlation between rows of the infinitesimal generator, and the policy iteration will be

inapplicable. In this paper, we will provide a uniform framework to solve the robust decision problems

for both discounted and average criteria by some suitable transformation of the discounted-cost vector.

2 Problem formulation

Consider a CCQN with M servers and N customs[2]. The routing matrix is q = [qij ], and the

state space is Φ = {n = (n1, n2, · · · , nM ) :
M∑

i=1

ni = N} with ni denoting the number of the customs at

the i-th server. A stationary policy is v = (v(1), · · · , v(K)) with v(n) = (µ1,n, µ2,n, · · · , µM,n) ∈ D(n),

where µi,n is the serving rate of server i at state n, and D(n) is a feasible action space. Let Ωs

be the set of all stationary policies, and N(t) the state process. Define µ(n) =
M∑

i=1

µi,n and λv =

maxn{µ(n)}. Under policy v, the transition matrix of the embedded Markov chain P v(q) and the

infinitesimal generator Av(q) satisfy Av(q) = Λv(P v(q) − I) with Λ = diag(µ(1), · · · , µ(K)). Let the

performance vector be fv = (f(1, v(1)), · · · , f(K, v(K)))τ . Similar to [5], define the discounted-cost
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criteria as ηv
α(i, q) = E{

∫ +∞

0
αe−αtf(N(t), v(N(t)))dt|X(0) = i}, i ∈ Φ. Here, α > 0 is a discount

factor. Let ηv
α(q) = (ηv

α(1, q), · · · , ηv
α(K, q))τ ; then[5]

ηv
α(q) = α(αI − Av(q))−1fv (1)

For a deterministic CCQN, the optimal policy can be obtained by potential-based policy iteration

and value iteration[6,7]. But in some uncertain practical systems, the decision-maker only knows the

range of qij . Let qij ∈ Θ
v
ij with Θ

v
ij being compact, and Θ

v = {q = [qij ] : qij ∈ Θ
v
ij ,

∑

j

qij = 1}. Then,

our goal is to find a policy v∗ satisfying v∗ ∈ arg minv∈Ω maxq∈Θv ηv
α(q) under the “worse” choice of q.

Notice that each qij does not appear in unique row of Av(q), so that the rows of Av(q) are dependent.

Therefore, there is usually none solution to the min-max problem. Now, redefine a weighted-average

discounted-cost as η̄v
α(q) = ωηv

α(q), where ω = (ω1, ω2, · · · , ωK) with ωi ∈ [0, 1] and
∑

i

ωi = 1. Then,

the optimal robust control problem is to find a policy

v∗ ∈ arg min
v∈Ωs

max
q∈Θv

η̄v
α(q) (2)

Here, ω may be a constant vector, or dependent on v, q and α. Suppose ω is continuously differentiable

with respect to (q, α) on Θ
v × [0,∞) for any v.

3 Potential-based solution of robust control policy

Suppose the stochastic process is irreducible for any v ∈ Ωs and q ∈ Θ
v. The steady-distribution

πv(q) satisfies πv(q)e = 1, Av(q)e = 0, πv(q) = 0, where e is an all-one vector. Then, average-cost

ηv(q) = πv(q)fv. For any α > 0, suppose the performance potential vector gv
α(q) is the unique

solution to Poisson equation (αI − Av(q) + λveπv(q))gv
α(q) = fv . Let ηv

0 (q) = limα→0+ ηv
a(q), η̄v

0 (q) =

limα→0+ η̄v
α(q); then we have the following lemma.

Lemma 1. a) ηv
0 (q) = eηv(q), η̄v

0 (q) = ηv(q);

b) For any α > 0, πv(q)α(αI − Av(q))−1 = πv(q);

c) limα→0+ α(αI − Av(q))−1 = eπv(q);

d) If ω = πv(q), then for any α > 0, η̄v
α(q) = η̄v

0 (q) = ηv(q).

Proof. a) First, it is easy to prove the following equation[6].

(αI − Av(q) + λveπv(q))−1 = (αI − Av(q))−1 − λveπv(q)/[α(λv + α)] (3)

Right-multiplying both sides of the above equation by αfv yields

ηv
α(q) = αgv

α(q) + λveηv(q)/(λv + α) (4)

which implies limα→0+ ηv
α(q) = eηv(q). Obviously, limα→0+ ωe = 1, then

η̄v
0 (q) = lim

α→0+
ωηv

α(q) = lim
α→0+

ω lim
α→0+

ηv
α(q) = lim

α→0+
ωeηv(q) = ηv(q)

b) Since πv(q)Av(q) = 0, πv(q)(αI − Av(q)) = απv(q). Right-multiplying both sides of this

equation by (αI − Av(q))−1 leads to the desired result.

c) The similar result has appeared in [5]. In fact, from (3), we directly have

lim
α→0+

α(αI − Av(q))−1 = lim
α→0+

{α(αI − Av(q) + λveπv(q))−1 + λveπv(q)/(λv + α)} = eπv(q)

d) If α > 0, from (b) we obtain

η̄v
α(q) = πv(q)ηv

α(q) = πv(q)α(αI − Av(q))−1fv = πv(q)fv = ηv(q)

which, combined with (a) as a = 0, implies the desired results for any α > 0. �
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Lemma 1 a) or Lemma 1 d) show that the uncertain average-cost problem is a special form of

the weighted-average discounted-cost problem. If ω = ei, where ei is a unit coordinate vector with the

i-th element equal to 1, then η̄v
α(q) = eiη

v
α(q) = ηv

α(i, q), and problem (2) becomes to find the optimal

robust policy for discounted-cost ηv
α(i, q).

The solution of (2) may be divided into two steps. First, for any given policy v, select the

worst routing matrix qv satisfying qv ∈ arg maxq∈Θv η̄v
α(q). Second, choose a policy v∗ satisfying

v∗ ∈ arg minv∈Ωs
η̄v

α(qv).

Theorem 1. For any v ∈ Ωs and α > 0, we have the following gradient formula

∇η̄v
α(q) = ∇ωαgv

α(q) + ωα(αI − Av(q))−1∇Av(q)gv
α(q) (5)

Here, “∇” denotes taking gradient with respect to q.

Proof. From (1), (αI−Av(q))ηv
α(q) = αfv . So (αI−Av(q))∇ηv

α(q)−∇Av(q)ηv
α(q) = 0. Av(q)e =

0 leads to ∇Av(q)e = 0. Then, from (4),

(αI − Av(q))∇ηv
α(q) = ∇Av(q)ηv

α(q) = α∇Av(q)gv
α(q)

that is, ∇ηv
α(q) = α(αI − Av(q))−1∇Av(q)gv

α(q). ωe = 1 implies ∇ωe = 0, which together with (4)

leads to ∇ωηv
α(q) = ∇ωαgv

α(q). Therefore,

∇η̄v
α(q) = ∇ωηv

α(q) + ω∇ηv
α(q) = ∇ωαgv

α(q) + ωα(αI − Av(q))−1∇Av(q)gv(q)

and the desired result is obtained. �

Now denote gv
0(q) to be gv(q). Then we have the following corollary.

Corollary 1. a) If ω = πv(q), α > 0, then ∇η̄v
α(q) = ∇ηv(q) = πv(q)∇Av(q)gv(q).

b) limα→0+ ∇η̄v
α(q) = ∇η̄v

0 (q) = ∇ηv(q)

Proof. a) Lemma 1 d) implies ∇η̄v
α(q) = ∇ηv(q). From (5) and Lemma 1 b),

∇η̄v
α(q) = ∇πv(q)αgv

α(q) + πv(q)∇Av(q)gv
α(q) (6)

From the Poisson equation, ∇πv(q)(αI − Av(q) + λveπv(q))gv
α(q) = ∇πv(q)fv, and ∇πv(q)(−Av(q) +

λveπv(q))gv(q)fv. It is easy to know ∇πv(q)e = 0, thus ∇πv(q)(αI−Av(q))gv
α(q) = −∇πv(q)Av(q)gv(q),

that is,

∇πv(q)αgv
α(q) = ∇πv(q)Av(q)gv

α(q) −∇πv(q)Av(q)gv(q)

From πv(q)Av(q) = 0, we obtain ∇πv(q)Av(q) + πv(q)∇Av(q) = 0. Thus

∇πv(q)αgv
α(q) = −πv(q)∇Av(q)gv

α(q) + πv(q)∇Av(q)gv(q)

Substituting the above equation into (6), we obtain ∇η̄v
α(q) = πv(q)∇Av(q)gv(q), which is similar to

the gradient formula of average-cost ηv with respect to v[8].

b) Lemma 1 a) implies ∇η̄v
0 (q) = ∇ηv(q). Since ∇ω is bounded and limα→0+ gv

α(q) = gv
0(q) =

gv(q), from (5) and Lemma 1 (c), we have

lim
α→0+

∇η̄v
α(q) = ωeπv(q)∇Av(q)gv

0(q) = πv(q)∇Av(q)gv(q) = ∇ηv(q) = ∇η̄v
0 (q)

and derive the desired result. �

Theorem 2. For any α > 0, if ω is a constant vector independent of v and q, then for any v′,

v ∈ Ωs and q′ ∈ Θ
v′

, q ∈ Θ
v

η̄v′

α (q′) − η̄v
α(q) = ωα(αI − Av(q))−1[(fv′

+ Av′

(q′)gv′

α (q′)) − (fv + Av(q)gv′

α (q′))] (7)

Proof. From (1), αηv
α(q) = αfv + Av(q)ηv

α(q). Then

(αI − Av(q))(ηv′

α (q′) − ηv
α(q)) = (αfv′

+ αAv′

(q′)ηv′

α (q′)) − (αfv + Av(q)ηv′

α (q′))
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which together with (4) yields

(αI − Av(q))(ηv′

α (q′) − ηv
α(q)) = (αfv′

+ αAv′

(q′)gv′

α (q′)) − (αfv + αAv(q)gv′

α (q′))

Then

ηv′

α (q′) − ηv
α(q) = α(αI − Av(q))−1[(fv′

+ Av′

(q′)gv′

α (q′)) − (fv + Av(q)gv′

α (q′))]

Since ω is a constant vector, we have η̄v′

α (q′) − η̄v
α(q) = ω(ηv′

α (q′) − ηv
α(q)), which together with the

foregoing equation leads to the desired result. �

From Theorem 1, we can look for the “worse” routing probabilities for a given policy by standard

gradient method or other gradient-like approaches such as Newton method and Quasi-Newton method.

Using (7), we may compare the performance of arbitrary two policies to search the optimal robust control

policy. If argminv∈Ωs
{fv + Av(qv)gṽ

α(qṽ)} is nonempty for any ṽ, potential-based policy iteration and

value iteration may be applied[7]. In addition, some global optimization techniques such as simulation

annealing and evolutionary algorithms may be necessary and effective in searching qv and the robust

control policy v∗.

For ergodic Markov processes, every element of α(αI − Av(q))−1 is positive. Then, we have the

following theorem.

Theorem 3. If ω is a constant vector, a policy v∗ is an optimal robust control policy if

fv∗

+ Av∗

(qv∗

)gv∗

α (qv∗

) 6 fv + Av(qv)gv∗

α (qv∗

), ∀v ∈ Ωs (8)

In fact, (8) is a sufficient and necessary condition for a policy to be optimal in deterministic case,

and is similar to the optimality condition in Theorem 2 of [6].

4 A numerical example

Consider an uncertain exponential CCQN with M = 3, N = 4, qij ∈ [1/2M, 3/2M ], µi,n ∈

[0.5, 1.2], ni 6= 0; µi,n = 0, ni = 0 and f(n, v(n)) =

M∑

i=1

fi(n, v(n)), where

fi(n, v(n)) = ln(1 + ni/N) · µi,n +
√

ni/2Nµi,n, ni 6= 0; fi(n, v(n)) = 0, ni = 0

Select λv = 3.6 and α = 0.9. By Quasi-Newton method, we have the following results for ω =

e1, e/K, πv(q) shown in Table 1.

Table 1 Computation results corresponding to different weight vectors

ω qv η̄v

α
(qv)

ω = e1 [0.16667, 0.37491, 0.45843; 0.16667, 0.5, 0.33333; 0.16667, 0.33333, 0.5] 0.90204

ω = e/K [0.17758, 0.42938, 0.39305; 0.21626, 0.5, 0.28374; 0.37681, 0.29402, 0.32917] 1.00563

ω = πv(q) [0.39533, 0.40281, 0.20186; 0.49148, 0.21014, 0.29838; 0.16667, 0.45247, 0.38087] 0.97812

In our simulation, we noticed that with the increasing of the customers or servers, the optimization

would be more and more time-consuming. Letting ω = πv(q), the computation time is 58 seconds if

M = 2, N = 3, and is 57 minutes for M = 3, N = 3, but it will reach 6.7 hours if M = 3, N = 4.

Thus, for large-scale systems, the computation-based method may be infeasible. There are some ways

to overcome the computation complexity such as potential-based parallel computing and simulation

methods. Especially, potential-based reinforcement learning and neuro-dynamic programming may be

effective in practice.

5 Conclusions

We see that the study of both average– and discounted-cost robust control problems for uncertain

CCQNs can be unified by using the concept of potential. The obtained results may be extended to
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other queuing networks such as phase-type queuing networks, and to semi-Markov decision processes

(SMDPs) with uncertain parameters through the potential theory of semi-Markov processes[5].
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