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Abstract The data packet dropouts phenomenon is usually inevitable when information transmit-
ted among communication networks. In this paper, the robust stabilization problem for uncertain
networked control systems with data packet dropouts is studied. First, an uncertain discrete-time
switching system model is presented to describe these networked control systems. The stability equiv-
alence is then proved between this switching system and an uncertain impulsive difference system.
Moreover, a sufficient condition is obtained for the asymptotical stability of the nonlinear impulsive
difference system. From this condition the robust stabilization problem is dealt with for the uncertain
impulsive system. Main results are given in linear matrix inequalities. Finally a numerical example
is given to illustrate the theoretical results.
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1 Introduction

The application of networked control systems (NCSs) have brought up many new issues, such as

transmission delays which could make the closed loop control systems unstable. On the other hand,

perturbations always exist in communication channels. Theses perturbations often cause data packet

dropouts that might lead to communication failures. Obviously, an NCS may be no longer stable when

suffered from continual packet dropouts, even if it is stable when the communication procedure is always

normal. This paper is focused on the modeling and robust stabilization problem of NCSs with inevitable

data packet dropouts in communication channels.

There have been plenty of theoretical results about NCSs so far. Nilsson[1] analyzed NCSs in the

discrete-time domain. He further modeled the network delays as constant, independently random, and

random but governed by an underlying Markov chain. Yu et al.
[2] presented a method to transform

the random network induced delays into constant ones. A state observer with delay compensation has

been studied in their work. Hassibi et al.
[3] modeled NCSs with data packet dropouts as asynchronous

dynamical systems (ADSs). Zhang et al.
[4] discussed detailedly the problem that how to guarantee the

stability of NCSs when various transmission delay or data packet dropout occurs. Zhivoglyadov et al.
[5]

studied a systematic networked control method designed specifically to handle the constraints of the

networked realization of an LTI control system. However there have been seldom results about robust

control of NCSs with data packet dropouts up to now.

Less conservative stability conditions for impulsive differential systems were presented by Ye in [6].

We extended these results to impulsive difference systems by applying methods in [7]. Linear matrix

inequalities (LMIs) are widely used in robust control problems[8]. Yu[9] solved the robust stabilization

problem of uncertain discrete-time linear systems with the LMI technique. Based on the theoretical

results mentioned above, the robust stabilization problem is discussed for uncertain NCSs with data

packet dropouts in this paper.

This paper is organized as follows. Considering the inevitable data packet dropouts in communi-

cation networks, an uncertain discrete-time switching system model for NCSs is presented in Section

2. Moreover, the equivalence with respect to stability is proved between this model and an uncertain

impulsive difference system. In Section 3, the stability condition is obtained for the equivalent impul-
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sive difference system, from which the robust stabilization problem is studied in Section 4. Finally, a

numerical example is given to illustrate the theoretical results.

The following notations will be used throughout the paper. R = (−∞,∞) denotes the real

numbers, N = {1, 2, 3, · · ·} is the set of positive integers, Z+ = {0, 1, 2, · · ·} is the set of nonnegative

integers. T = {t0, t0 + 1, t0 + 2, · · ·} ⊆ Z+ is the set of discrete time instants. x(t) ∈ Rn, t ∈ T is the

discrete n dimensional vector sequence of set T . ‖•‖ refers to the Euclidean vector norm or the induced

matrix norm.

2 Problem formulation

A type of uncertain NCSs with data packet dropouts can be depicted as Fig. 1.

Fig. 1 A model of networked control systems with data packet dropouts

Before the detailed discussion, some basic assumptions for the system model are given as follows.

1) an NCS comprises an uncertain discrete-time closed loop control system with sensor data being

communicated to the controller via a real-time network. A full state feedback controller is assumed,

which has a static gain matrix K.

2) the network has a sufficient large bandwidth such that transmission delays can be omitted.

This assumption is reasonable in real-time control networks.

3) a sampling switch in the feedback loop indicates whether the network works normally. When

the switch is closed, sensor data arrive at the controller without any loss and the NCS works like a

conventional discrete-time feedback control system. Otherwise, if the switch is open, the network is

congested somehow and the controller receives no data. In this case, we assume that control law is

u(t) = 0 for simplicity.

4) since the network can′t be abnormal for ever, we assume that there exists an upper bound for

the duration of data packet dropouts every time. A constant NL(0 < NL < +∞) is used to denote this

upper bound. Thus, the controller receives no data at most NL steps between two successive successful

communication procedures. Note that NL is a positive integer.

Let Γ = {t0, t1, t2, · · · : t0 < t1 < t2 < · · ·} ⊂ T ⊆ Z+ denote the set of beginning and ending

instants of data packet dropouts durations, where t0 is also the initial time of the NCS. Without loss of

generality, we assume that the network works normally between instants t2k−2 and t2k−1 but becomes

congested between instants t2k−1 and t2k, where k ∈ N . Then we can introduce two notations, that is,

Ω1 =
⋃

∞

k=1{t2k−1, t2k−1 + 1, · · · , t2k − 1} and Ω2 =
⋃

∞

k=1{t2k−2, t2k−2 + 1, · · · , t2k−1 − 1}. Obviously,

Ω1 denotes the set of time instants at which sensor data are always lost, while Ω2 denotes the set of

time instants at which sensor data is communicated to the controller normally. Note that we have

T = Ω1 ∪ Ω2.

Based on aforementioned assumptions, we present an uncertain discrete-time switching system

model for an NCS with data packet dropouts. This switching system is described by

x(t + 1) = (A + ∆A(t))x(t), t ∈ Ω1
{

x(t + 1) = (A + ∆A(t))x(t) + (B + ∆B(t))u(t)

u(t) = Kx(t)
, t ∈ Ω2 (1)
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where x ∈ Rn, u ∈ Rm, t ∈ T , A,B and K are matrices with appropriate dimensions, ∆A(t) and

∆B(t) are norm-bounded matrices to describe the system uncertainties, x(t0) = x0 is the initial state.

It might be difficult to discuss the robust stabilization problem of system (1) directly. We can

rewrite it as

x(t + 1) = Ā(t)x(t), t ∈ Ω2 x(t2k) = Ikx(t2k−1), k ∈ N (2)

where Ā(t) = A + ∆A(t) + (B + ∆B(t))K, x(t0) = x0 is the initial state. Ik satisfies

Ik =

t2k−1
∏

t=t2k−1

(A + ∆A(t)) =(A + ∆A(t2k − 1))(A + ∆A(t2k − 2)) · · · (A + ∆A(t2k−1)) (3)

Nk = t2k − t2k−1 < NL, k ∈ N

Let Ω3 =
⋃

∞

k=1{t2k−2, t2k−2 + 1, · · · , t2k−1}, and we have the following definition.

Definition 1. Let g : Ω3 7→ T , which maps elements of Ω3 to T in turn. It can be depicted as

Fig. 2. Apparently, g is invertible.

Fig. 2 Function g : Ω3 7→ T

The function g can be described by

g(t) =











t, t ∈ {t0, t0 + 1, · · · , t1 − 1}
τk, t = t2k−1, k ∈ N

τk + 1 + t − t2k, t ∈ {t2k, t2k + 1, · · · , t2k+1 − 2, t2k+1 − 1}, k ∈ N

(4)

Note that {t0, t0 + 1, · · · , τ1 − 1, τ1, · · · , τ2 − 1, τ2, · · · , τk − 1, τk, · · ·} = {t0, t0 +1, t0 +2, · · ·} = T , where

τk = g(t2k−1), k ∈ N and τk + 1 = g(t2k), k ∈ N .

Consider an uncertain impulsive difference system as follows:

x(t + 1) = Ã(t)x(t), t ∈ T and t 6= τk x(τk + 1) = Ikx(τk), k ∈ N (5)

where Ã(t) = Ā(g−1(t)) = A + ∆A(g−1(t)) + (B + ∆B(g−1(t)))K, time instants τk satisfy τk =

g(t2k−1) ∈ T, k ∈ N , Ik is given by (3). Since uncertain matrices ∆A(t) are norm-bounded and the

duration of data packet dropouts is limited (< NL) for every time, it follows from (3) that there exists

a constant β > 0 such that ‖Ik‖ < β.

Theorem 1. The trivial solution of system (1) is stable if and only if the trivial solution of system

(5) is stable.

Proof. Assume that both system (1) and system (5) have a same initial condition x(t0) = x0.

Let x(t)|(1) and x(t)|(5) represent the solutions of systems (1) and (5) respectively. We have

x(t)|(5) = Ã(t − 1)Ã(t − 2) · · · Ã(t0)x0 = Ā(t − 1)Ā(t − 2) · · · Ā(t0)x0 = x(g−1(t))|(1)

when t0 < t 6 t1 = τ1. Otherwise when t = τk + 1, k ∈ N , we have

x(t)|(5) =

[ 2
∏

j=k

IjÃ(τj − 1)Ã(τj − 2) · · · Ã(τj−1 + 1)

]

I1Ã(t1 − 1)Ã(t1 − 2) · · · Ã(t0)x0 =
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[ 2

∏

j=k

(A + ∆A(t2j − 1))(A + ∆A(t2j − 2)) · · · (A + ∆A(t2j−1))Ā(t2j−1 − 1)Ā(t2j−1 − 2) · · ·

Ā(t2j−2)

]

(A + ∆A(t2 − 1))(A + ∆A(t2 − 2)) · · · (A + ∆A(t1))Ā(t1 − 1)Ā(t1 − 2) · · · Ā(t0)x0 =

x(t2k)|(1) = x(g−1(t))|(1)

When τk + 1 < t 6 τk+1, k ∈ N , we can obtain x(t)|(5) = x(g−1(t))|(1) similarly. Thus we can conclude

that x(t)|(5) = x(g−1(t))|(1), t ∈ T .

The rest of this proof is omitted because it is apparent. �

Remark 1. The stability equivalence between system (1) and system (5) can be extended to the

asymptotical stability, the exponential stability and so on.

From now on, we transform the stability problem of NCS (1) to the stability problem of an

uncertain impulsive difference system (5).

3 Stability results of impulsive difference systems

New stability results were obtained by Ye in [6] for the impulsive differential system. We extend

these results to the discrete-time domain, i.e., to the impulsive difference system.

Consider a nonlinear impulsive difference system described by

{

x(t + 1) = f(x(t), t), t ∈ T, t 6= τk ∈ E

x(t + 1) = ϕk(x(t)), t = τk ∈ E, k ∈ Z+
(6)

where x ∈ Rn, f : Rn × T → Rn is continuous with respect to x and satisfies f (0, t) = 0. The set

E = {τ0, τ1, · · · : τ0 < τ1 < · · ·} ⊂ Z+ is an unbounded, closed, discrete subset of Z+ which denotes the

set of times when jumps occur. ϕk : Rn → Rn denote the transitions of the state at time instants τk

and satisfy ϕk(0) = 0 for all k ∈ Z+. Assume that system (6) has a unique solution {x(t;x0, t0)} for

all x0 ∈ Rn and t0 > 0 with initial condition (x0, t0). Obviously, {0} is a solution of system (6). For

the sake of simplicity, we further assume that ϕ0(x) = x, τ0 = t0 − 1, x(t0) = x(τ0).

Theorem 2. Assume that there exists a function V (x(t), t) which is continuous with respect to

x, and a(r), b(r), c(r) ∈ K such that

i) a(‖x‖) 6 V (x, t) 6 b(‖x‖) for all (x(t), t) ∈ Rn × T

ii) for all t ∈ {τk + 1, τk + 2, · · · , τk+1 − 1}, k ∈ Z+, the difference of V (x(t), t) along the solution

of system (6) satisfies

∆V (x(t), t) = V (x(t + 1), t + 1) − V (x(t), t) 6 0 (7)

iii) for all k ∈ Z+,

V (x(τk+1 + 1), τk+1 + 1) − V (x(τk + 1), τk + 1) 6 −c(‖x(τk + 1)‖) (8)

Then the trivial solution of system (6) is asymptotically stable.

Proof. 1) stability

From (7) we have

V (x(t0), t0) = V (x(τ0 + 1), τ0 + 1) > V (x(t), t) (9)

for all t ∈ {τ0 + 1, τ0 + 2, · · · , τ1}. Moreover, inequality (8) implies that

V (x(t0), t0) > V (x(τ1 + 1), τ1 + 1) > · · · > V (x(τj + 1), τj + 1) > V (x(t), t) (10)

for all t ∈ {τj + 1, τj + 2, · · · , τj+1}, j ∈ N .

Therefore it follows from (9) and (10) that V (x(t0), t0) > V (x(t), t), ∀t ∈ T . Note that V (0, t) =

0. Thus, for any ε > 0 there is δ = δ(ε, t0) > 0 such that V (x(t0), t0) < a(ε) if ‖x(t0)‖ < δ, which leads

to a(‖x(t)‖) 6 V (x(t), t) 6 V (x(t0), t0) < a(ε) for all t ∈ T . It follows from a(r) ∈ K that ‖x(t)‖ < ε.

This proves the stability.

2) attraction
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From (8) we have V (x(τk + 1), τk + 1) − V (x(t0), t0) 6 −
k−1
∑

j=0

c(‖x(τj + 1)‖). It implies 0 <

V (x(τk + 1), τk + 1) 6 V (x(t0), t0) −
k−1
∑

j=0

c(‖x(τj + 1)‖). Taking the limit with respect to k gives 0 6

lim
k→∞

V (x(τk +1), τk +1) 6 V (x(t0), t0)−
∞
∑

j=0

c(‖x(τj +1)‖). Note that ‖x(t0)‖ can be selected arbitrary

small. Thus the series
∞

∑

j=0

c(‖x(τj + 1)‖) is convergent, which implies that lim
k→∞

c(‖x(τk + 1)‖) = 0.

Therefore, it follows from c(r) ∈ K that lim
k→∞

x(τk + 1) = 0.

For any ε > 0, there is δ = δ(ε), 0 < δ 6 ε such that b(δ) < a(ε). Moreover, there is a n = n(δ)

such that ‖x(τk + 1)‖ < δ 6 ε for all k > n. It follows that

a(‖x(t)‖) 6 V (x(t), t) 6 V (x(τk + 1), τk + 1) 6 b(‖x(τk + 1)‖) < b(δ) < a(ε) (11)

for all t ∈ {τk +2, τk +3, · · · , τk+1}, k > n. Thus we have ‖x(t)‖ < ε for all t ∈ {τk +2, τk +3, · · · , τk+1},
k > n. Let M = τn+1 + 1; it is apparent that ‖x(t)‖ < ε for all t > M . This proves the attraction.

Both stability and attraction imply that the conclusion of Theorem 2 holds. �

4 Robust stabilization of uncertain NCSs with data dropouts

First, a sufficient condition for the asymptotical stability of system (5) is obtained as follows.

Theorem 3. Assume that for system (5) there exist a constant α > 0 and a positive definite

diagonal matrix P ∈ Rn×n whose diagonal elements are the same, such that

x
T(t)[γÃ

T(t)PÃ(t) − P ]x(t) 6 −α‖x(t)‖2 (12)

for all x ∈ Rn, t ∈ T where positive constant γ satisfies

γ = max(1, β
2), ‖Ik‖ < β (13)

Then the trivial solution of system (5) is asymptotically stable.

Proof. For system (5), construct the Lyapunov function V (x(t), t) = xT(t)Px(t). Apparently,

this function satisfies the first condition of Theorem 2.

It follows from (12) and (13) that for all t ∈ {τk + 1, τk + 2, · · · , τk+1 − 1}, k ∈ Z+,

∆V (x(t), t) = V (x(t + 1), t + 1) − V (x(t), t) = x
T(t)(ÃT(t)PÃ(t))x(t) − x

T(t)Px(t) 6 0 (14)

Thus V (x(t), t) satisfies the second condition in Theorem 2.

For all t ∈ {τ1 + 1, τ2 + 1, · · · , τk+1 + 1, · · ·}, k ∈ Z+, the solution of system (5) can be described

by x(τk+1 + 1) = Ik+1x(τk+1) = Ik+1

{ τk+1
∑

t=τk+1−1

Ã(t)

}

x(τk + 1). It follows that

V (x(τk+1 + 1), τk+1 + 1) − V (x(τk + 1), τk + 1) =

x
T(τk + 1)

{[ τk+1−1
∏

t=τk+1

Ã
T(t)

]

I
T
k+1PIk+1

[ τk+1
∏

t=τk+1−1

Ã(t)

]

− P

}

x(τk + 1) (15)

Note that all elements in the diagonal of P have the same value. Thus for all x ∈ Rn, k ∈ Z+ we

have xT(IT
k+1PIk+1)x = xT(IT

k+1Ik+1P )x 6 ‖Ik+1‖2xTPx 6 γxTPx. Moreover, it follows that

[ τk+1−1
∏

t=τk+1

Ã
T(t)

]

I
T
k+1PIk+1

[ τk+1
∏

t=τk+1−1

Ã(t)

]

6

γ

[ τk+1−1
∏

t=τk+1

Ã
T(t)

]

P

[ τk+1
∏

t=τk+1−1

Ã(t)

]

6 γÃ
T(τk+1 − 1)PÃ(τk+1 − 1) 6 P (16)
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which leads to V (x(τk+1+1), τk+1+1)−V (x(τk +1), τk +1) 6 −α‖x(τk +1)‖2, k ∈ Z+. Let c(r) = αr2;

then the third condition of Theorem 2 is satisfied. Since system (5) is a special case of system (6), it is

asymptotically stable from Theorem 2. This completes the proof. �

To study the robust stabilization problem of system (5), we assume further that the uncertainty

matrices in the system are described by

[∆A(t) ∆B(t)] = DF (t)[E1 E2] (17)

where time-varying part F (t) satisfies FT(t)F (t) 6 I .

Theorem 4. For uncertain impulsive difference system (5), if there exist a positive definite

diagonal matrix X̃ ∈ Rn×n whose diagonal elements are the same and a matrix Q ∈ Rm×n, such that

the LMI




−X̃ + γDDT √
γ[AX̃ + BQ] 0√

γ[AX̃ + BQ]T −X̃ [E1X̃ + E2Q]T

0 E1X̃ + E2Q −I



 < 0 (18)

holds, where γ is given by (13), then system (5) is stabilizable via a linear static controller u(t) =

QX̃−1x(t).

Proof. The proof is similar to Theorem 2 in [9] and thus is omitted. �

5 Numerical examples

For system (1), we assume x ∈ R2, u ∈ R2, A =

[

0.9 0.6

0.2 0.2

]

, B =

[

0

1

]

, D =

[

0.1 0

0 0.1

]

,

F (t) =

[

sin(t) 0

0 sin(t)

]

, E1 =

[

0.2 0.3

0.1 0.4

]

. Further, we assume NL = 3 such that ‖Ik‖ 6 ‖A +

∆A(τk)‖NL < 1.65. Selecting β = 1.65, γ = max{1, β2} = 2.7225, from Theorem 4 we can obtain

X̃ =

[

0.9504 0

0 0.9504

]

, Q = [−0.6887 − 0.4759], K = QX̃
−1 = [−0.7246 − 0.5007]
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