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Abstract Consistency and the weights estimation model of the interval number comparison matrix
(INCM) in the analytical hierarchy process is studied under uncertainty decision-making case. Based
on the weights feasible region, the local consistency definition and the local satisfactory consistency
definition are given. Then, a computational model set up to test whether the INCM has the local
satisfactory consistency or not. Moreover, the consistency degree based on the random crisp compar-
ison matrix is defined as an effective index to test the consistency. Next, the upper range model, the
lower range model, and the possible value model are put forward which can solve the problem that
some existing approaches do not consider the consistency and its effect on the weights. According to
the property of these models, a genetic algorithm is developed.
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1 Introduction

The analytical hierarchy process (AHP) is widely used in the multiple criteria decision-making

fields[1∼3]. When using the AHP, a decision maker often makes imprecise judgments or inconsistent

judgments owing to the complexity of the decision-making problem, and adopts the interval numbers

for imprecise judgments. And then, the INCM is obtained. The INCM has been studied by many

researchers[4∼12] , and the main content and contribution of this paper are as follows.

First, consistency definition and consistency test approach. To our knowledge, few researchers

focus on the consistency definition. Wei[4] and Bryson[5] gave a perfect consistency definition. However,

the perfectly consistent comparison matrix cannot be obtained easily. Moreover, the consistency has its

point and has many effects on the weights estimation. Therefore, the satisfactory consistency definition

and its property should be studied. In addition, there are not any practicable approaches to test whether

the INCM is consistent or not.

Secondly, weight estimation analysis. There are many available approaches to derive the weights.

However, they have many limitations. For example, the approach from Wei[4] is not obvious and it

cannot estimate the exact range. Leung[6] and Haines[8] put forward a linear model based on the

weights feasible region. However, it cannot guarantee all vertices of feasible region are found when

the rank of the INCM is big enough. Wang[7] did not test whether the matrix was consistent or not,

and the computational work is comparatively heavy. Lipovetsky[9] derived the weights from the matrix

comprised of the stochastic variables, while it did not have reciprocal property. Byeong[10] derived the

weights via the simulation approach. However, it needed comparative computations, and it could not

guarantee the exact range was found in limited iterations. Mikhailov[11] and Buckley[12] derived the

weights from the fuzzy number comparison matrix, while they did not consider the consistency effects

on the weights estimation. In this case, the decision-making reliability based on the weights cannot be

guaranteed. In order to overcome these limitations, a new weight model solved by the genetic algorithm

is put forward. The aim of this paper is to make the AHP theory perfect under uncertainty case.

2 Consistency analysis
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When studying the weights estimation approach for the fuzzy number comparison matrix, Leung[6]

defined the weights feasible region as S = {wi|aL
ij 6 wi

wj
6 aU

ij , wi > 0, i, j = 1, · · · , n}. Based on the

feasible region, the local consistency and the local satisfactory consistency are defined.

Definition 1. The INCM Ā has the local consistency, if one set of weight wi, i = 1, · · · , n meets

aL
ij 6

wi

wj

6 aU
ij , ∀i, j ∈ J (1)

It should be noted that the reason that the INCM satisfying (1) is called the local consistency

instead of consistency is that though there is one set of weight wi, i = 1, · · · , n derived from matrix

A (aL
ij 6 aij 6 aU

ij), the weights derived from any matrix A (aL
ij 6 aij 6 aU

ij) may not satisfy (1).

Therefore, formula (1) can only represent the local consistency.

Owing to the complexity of decision-making problem, formula (1) cannot be easily satisfied. In

this case, the local satisfactory consistency is defined.

Definition 2. INCM Ā has the local satisfactory consistency, if one set of weight wi, i = 1, · · · , n
meets

(1 − δij)a
L
ij 6

wi

wj

6 aU
ij(1 + δij), ∀i, j ∈ J (2)

In (2), δij is the tolerance deviation. Let δ = max
i,j

δij . From Xu[1], λmax − n 6
(n − 1)

2 δ2 can be

obtained, which can be transformed into λmax − n
(n − 1)RI

6 δ2

2RI . If it has the satisfactory consistency, the

formula λmax − n
(n − 1)RI

6 0.1 can be obtained. Then, one can obtain δ2

2RI 6 0.1. Therefore, we can obtain

δ =
√

0.2RI .

The weights set from formula (2) are also considered as the feasible region which, if not confusion,

will define all the weights feasible regions in the rest of the paper. Hence, the problem of testing whether

the INCM Ā is consistent or not can be transformed into testing whether S is empty or not. Based on

this idea, the model P1 is put forward.

min β = β1 + β2 (3)

s.t. ln(1 − δ)aL
ij 6 lnwi − lnwj + β1ij , 1 6 i < j 6 n (4)

lnwi − lnwj 6 ln(1 + δ)aU
ij + β2ij , 1 6 i < j 6 n (5)

β1 > β1ij , β2 > β2ij (6)

β1ij , β2ij > 0, wi > 0 (7)

(3) denotes minimizing all tolerance deviations; (4) and (5) are obtained from natural logarithm of (2);

(6) denotes β1, β2 to be the maximums of the tolerance deviations; (7) denotes all tolerance deviations

and the weights are not negative.

Let w′

i = lnwi. The model P1 can be transformed into a linear program. If min β = 0, it means the

weights feasible region S is not empty with δ, and the INCM Ā has the local satisfactory consistency;

or else (minβ > 0), it means the INCM Ā has not the local satisfactory consistency.

How to test the whole consistency when the INCM has the local satisfactory consistency? When

using the AHP, there should be one satisfactory consistent matrix A = (aij)n×n, aij ∈ āij , which can

reflect the decision maker′s actual preference. However, it cannot be obtained easily since the decision-

making problem is complex. To overcome the difficulty, one can generate a satisfactory consistent

comparison matrix to denote his preference approximately. Therefore, the random crisp comparison

matrix is introduced.

Definition 3. The comparison matrix A = (aij)n×n is called the random crisp comparison matrix

of the INCM Ā, which is constructed as follows: for 1 6 i < j 6 n, aij is generated by the uniform

distribution in [aL
ij , a

U
ij ]. Let aji = 1/aij for 1 6 i < j 6 n, and let aii = 1 for all i = 1, · · · , n.

The relationship between the random crisp comparison matrix based on Definition 3 and the

weights feasible region S from the P1 can referred to Theorem 1.

Theorem 1. The solution in the weights feasible region is corresponding to the satisfactory

random crisp comparison matrix uniquely.
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Proof. 1) The comparison matrix A = (aij)n×n can be constructed via the comparison based

on wi if it satisfies aL
ij 6 wi

wj
6 aU

ij . Then, one can obtain aij = wi
wj

, aik = wi
wk

, akj = wk
wj

. That is,

aij = aikakj , which means the comparison matrix A is perfectly consistent.

2) If there is one random crisp comparison matrix having the perfectly consistency, one can obtain

aL
ij 6 aij 6 aU

ij based on Definition 3. In addition, the formula aij = wi
wj

can be obtained. Therefore,

one can obtain aL
ij 6 wi

wj
6 aU

ij .

If the random crisp comparison matrix A meets aL
ij(1 − δ) 6 wi

wj
6 aL

ij , a
U
ij 6 wi

wj
6 aU

ij(1 + δ).

From 1), one can conclude that it has not the perfectly consistency since matrix A does not meet

aL
ij 6 wi

wj
6 aU

ij . However, it has the satisfactory consistency according to the value of δ.

To a random crisp comparison matrix A, if it has the satisfactory consistency, from 2), one can

conclude aL
ij(1 − δ) 6 wi

wj
6 aL

ij or aU
ij(1 + δ) > wi

wj
> aU

ij , which meets aL
ij(1 − δ) 6 wi

wj
6 aU

ij(1 + δ).

V ia the AHP theory, the weights wi, i = 1, · · · , n exist uniquely. Therefore, we can conclude that

the solution in the feasible region is corresponding to the satisfactory random crisp matrix uniquely.�

If the weights feasible region S is empty, there is not the satisfactory crisp comparison matrix

of the INCM. If S has one set of weights, it must be corresponding to one satisfactory random crisp

comparison matrix A uniquely. Moreover, the larger numbers of the solutions in the feasible region,

the larger numbers of the satisfactory crisp comparison matrixes. In other words, the numbers of the

satisfactory random crisp comparison matrixes denoting the decision maker′s preference are larger. In

this case, the decision maker′s judgment is right and the logical harmonization is high. Therefore, the

numbers of the solutions in the feasible region can test the whole consistency. However, it is difficult to

solve the weights feasible region from the P1 as the rank of the INCM is large. To avoid the difficulty,

an equivalent approach is put forward.

Definition 4. N random crisp comparison matrixes denoted as A1, · · · , AN are generated based

on Definition 3. If there are m comparison matrixes having the satisfactory consistency (CR 6 0.1),

the consistency degree η of the INCM can be defined as m
N × 100%.

Since the satisfactory random crisp comparison matrix is corresponding to the solutions in the

weights feasible region uniquely, the value of η can reflect the consistency. In addition, the better

consistency is, the larger value of η is, vice versa. In the following, two examples from previous literature

are given to show the existence on consistency degree.

Example 1. The example is from [1,4]. Ā =

∣

∣

∣

∣

∣

∣

∣

∣

[1, 1] [2, 4] [3, 5] [3, 5]

[1/4.1/2] [1, 1] [1/2, 1] [2, 5]

[1/5, 1/3] [1, 2] [1, 1] [1/3, 1]

[1/5, 1/3] [1/5, 1/2] [1, 3] [1, 1]

∣

∣

∣

∣

∣

∣

∣

∣

. Generate

50 random crisp comparison matrixes, and obtain η = 33%. It shows the consistency degree is bad.

Example 2. The example is from [7]. Ā =

∣

∣

∣

∣

∣

∣

∣

∣

[1, 1] [2, 5] [2, 4] [1, 3]

[1/5, 1/2] [1, 1] [1, 3] [1, 2]

[1/4, 1/2] [1/3, 1] [1, 1] [1/2, 1]

[1/3, 1] [1/2, 1] [1, 2] [1, 1]

∣

∣

∣

∣

∣

∣

∣

∣

. The value of η

equals 88% and it shows the consistency degree is high.

Therefore, one can calculate the consistency degree instead of solving the weights feasible region

when analyzing the consistency of the INCM.

3 Weight model

3.1 Weight range model

Let IN = {1, · · · , N}. Generate N random crisp comparison matrixes based on Definition 3,

denoted as AI , aI
ij ∈ āij , I ∈ IN . Solve the eigenvalue problem of AI if CR(AI) 6 0.1, and obtain the

standardization weights denoted as wI = (wI
1 , · · · , wI

n)T. If the value of N is large enough, then the

lower weight range of the INCM Ā can be written as

P2 wL
i = min

I∈IN
wI

i (8)

And the upper weight range can be written as

P3 wU
i = max

I∈IN
wI

i (9)
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From formulas (8) and (9), the weights can be expressed as

w̄i = [wL
i , wU

i ] (10)

Then, the weights estimation problem can be transformed into estimating values of wL
i and wU

i .

For convenience, (8) can be rewritten into (11), where G is a constant.

P2 wL
i = max

I∈IN
(G − wI

i ) (11)

The optimization solution of P2 and P3 has the following properties (see Theorem 2).

Theorem 2. The P2 and P3 have the feasible solution if the INCM has the local satisfactory

consistency. In addition, the optimization solution satisfies wL
i > 1

(n − 1)a + 1
and wU

i 6 1
n − 1

a
+ 1

,

where n denotes the rank of the INCM and a denotes the maximal scale value.

Proof. There will be one random crisp comparison matrix satisfying CR(AI) 6 0.1 if the INCM

has the local satisfactory consistency. Hence, the P2 and P3 have the feasible solution.

Let n alternatives be compared. Construct the matrix A′ = (a′

ij)n×n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1/a 1/a · · · 1/a

a 1 1 · · · 1

a 1 1 · · · 1

· · · · · · · · · · · · 1

a 1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It shows w′

1 is a minimum among n alternatives. That is, wF
1 from any one consistent comparison

matrix AF isn′t less than w′

1. The weighs from the eigenvector method are close to the geometric

mean. Hence, one can obtain w′

1 =

n

√

1

an−1

(n − 1) n
√

a +
n

√

1

an−1

= 1
(n − 1)a + 1

. Therefore, we can obtain

wL
i > 1

(n − 1)a + 1
.

Similarly, construct the reciprocal matrix A′′ = (a′′

ij)n×n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a a · · · a

1/a 1 1 · · · 1

1/a 1 1 · · · 1

· · · · · · · · · · · · 1

1/a 1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. It shows

w′′

1 is a maximum among n alternatives. That is, wF
1 from any one consistent comparison matrix AF

isn′t more than w′

1. One can obtain w′′

1 =
n
√

an−1

(n − 1) n
√

1/a +
n
√

an−1
= 1

n − 1

a
+ 1

as CR(A′′) 6 0.1.

Therefore, we can obtain wU
i 6 1

n − 1

a
+ 1

.

In a word, the P2 and P3 have the feasible solution as CR(AI) 6 0.1. Moreover, we can obtain
1

n − 1

a
+ 1

> wI
i > 1

(n − 1)a + 1
. �

In particular, a = 9 as one adopts 1∼9 scale, with n = 4. Then, one can obtain wL
i > 0.036 and

wU
i 6 0.75.

3.2 Possible value model

Owing to the consistency level of the comparison matrix can reflect the logical harmonization of the

decision maker, one could conclude that the less CR, the better reliability on the weights if the decision

maker did not have a prejudice for any particular alternative[13]. Based on this conclusion, the other

model is developed. If there are many solutions in the feasible region, they must be corresponding

to satisfactory random crisp comparison matrixes uniquely. Among these matrixes, there will be a

comparison matrix Ag of which the CR is a minimum. Moreover, Ag is unique as long as the INCM

is given reasonably. Since the decision-making reliability is higher based on the weights derived from

Ag, one can take the weights from Ag as the most possible weights. Then, the weights estimation

problem can be transformed into finding out Ag. Generate N random crisp comparison matrixes
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based on Definition 3, denoted as AI , I ∈ IN . Solve the eigenvalue problem of AI . Let CR(Ag) =

min{CR(AI)|I ∈ IN}. And then, one can obtain Ag through solving the model P4.

P4 min{CR(AI)| I ∈ IN} (12)

For convenience, (12) can be transformed into (13).

arg max G − CR(AI) (13)

The property of the P4 can be referred to Theorem 3.

Theorem 3. The optimization solution is not less than zero. Moreover, if the INCM has the

satisfactory consistency, one can conclude that min CR 6 0.1.

Proof. Omitted. �

If the optimization solution of the model P4 is not less than 0.1, it shows the INCM has not the

local satisfactory consistency. In this case, the decision maker should adjust judgments.

3.3 Integration with models P 2, P 3 and P 4

The weights of the INCM Ā can be expressed as w̄i = [wL
i , wU

i ], which depicts the exact weights

range. However, the interval range is too large to guarantee the weights range integrality, which increases

the uncertainty. Via model P4, the decision maker can know the most possible weights, but this result

does not consider the uncertainty. In this case, if we integrate these results, and express the weights as

w̄ = [wL
i , wg

i , wU
i ], then the integration result will have merits of models P2, P3 and P4.

Owing to the comparability of [wL
i , wg

i , wU
i ] and a triangle fuzzy number, one can adopt its arith-

metic approach to obtain the synthesis weights result. Then, rank these interval numbers according to

the approach from [14], simplified as

y(wi) =
wL

i + 4wg
i + wU

i

6
, i = 1, · · · , n (14)

Based on the value of y(wi), one can obtain the rank of n alternatives.

4 Algorithm research

Since the relationship between CR(AI) and AI is non-linear, the models P2, P3 and P4 are non-

linear programs. If the general approach is adopted, then the arithmetic is complex. In this paper,

the genetic algorithm is designed. Define parameters as follows: N denotes the individual number of

population size, k denotes the counter of generation, X denotes the chromosome, f(X) denotes the

fitness. Let Ā = ([aL
ij , a

U
ij ])n×n. The genetic algorithm is designed as follows.

1) Code chromosome: Let X = (a12, a13, · · · , aij , · · · , an−1n), 1 6 i < j 6 n. The value of aij are

randomly generated by the uniform distribution in [aL
ij , a

U
ij ]. In addition, one gene is corresponding to

one entry of the upper triangular matrix and one chromosome is corresponding to one random crisp

comparison matrix uniquely.

2) Fitness function: Let f(XI) = G−wI
i − b denote the fitness of chromosome I as CR(AI) > 0.1,

where b denotes the non-feasible punishment factor. Generally, it is close to 1. Let f(XI) = G−wI
i as

CR(AI) 6 0.1. To the model P4, the fitness is f(XI) = G − CR(AI).

3) Crossover operator: The arithmetic crossover is adopted.

4) Mutation operator: The uniform mutation operator is adopted.

5) Selection operator: Models P2, P3 are to solve the standardization weights and P4 is to solve

the consistency ratio. Finesses of models P2, P3, and P4 are not large. Hence, the wheel selection

cannot differentiate these chromosomes. In this case, one can rank finesses of N chromosomes from

small to large, and then, let them be the value of 1 to N accordingly. Then, the selection probability

can be calculated as p(I) = 2I
N(N + 1)

, for all I = 1, · · · , N .

6) Stop rule: The iteration continues until a given number of generations is reached.

The algorithm can be described as follows.

Step 1. Generate the initialization population;

Step 2. Solve f(X) and select N populations based on the selection operator. If the stop rule is

satisfied then Stop; or go to Step 3;
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Step 3. Generate N new populations via the crossover and mutation operators, then go to Step 2.

5 Example analysis

Example 1. Select one office director from four candidates (see [1]) .Suppose the following criteria

are considered: capability, wisdom, relations, and constitution. The decision maker gives the INCM

based on the capability criteria as example 1 in section 2.

Using the proposed GA, the result is: w̄1 = [0.452, 0.5324, 0.5653], w̄2 = [0.1721, 0.1975, 0.256],

w̄ = [0.115, 0.1425, 0.1975] and w̄4 = [0.086, 0.1276, 0.1629]. Rank these interval numbers, and obtain

y(w1) = 0.524, y(w2) = 0.203, y(w3) = 0.147 and y(w4) = 0.1266. Then, the ranks of these candidates

are 1 > 2 > 3 > 4.

Example 2. The problem is the same as example 1, and the INCM is given as example 2

in section2. The weights are as follows: w̄1 = [0.3687, 0.4843, 0.5370], w̄2 = [0.1658, 0.2087, 0.2723],

w̄3 = [0.1016, 0.1372, 0.1780] and w̄4 = [0.1433, 0.1698, 0.2452]. Rank these interval numbers, and

obtain y(w1) = 0.474, y(w2) = 0.21254, y(w3) = 0.138 and y(w4) = 0.178. Then, the ranks of these

candidates are 1 > 2 > 4 > 3.

6 Conclusion

The logical consistency level of the INCM can be tested according to the local satisfactory con-

sistency and consistency degree suggested in this paper. Moreover, the weights model considers the

consistency effects on the weights estimation, which is suitable for deriving the weights from the INCM

with the low consistency degree specially. Most important, the model gives the weights upper range,

the lower range and most possible value, which can provide the decision maker with more information.
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