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Abstract A fast object detection method based on object region dissimilarity and 1-D AGADM
(one dimensional average gray absolute difference maximum) between object and background is
proposed for real-time defection of small offshore targets. Then computational complexity, antinoise
performance, the signal-to-noise ratio (SNR) gain between original images and their results as a
function of SNR of original images and receiver operating characteristic (ROC) curve are analyzed and
compared with those existing methods of small target detection such as two dimensional average gray
absolute difference maximum (2-D AGADM), median contrast filter algorithm and multi-level filter
algorithm. Experimental results and theoretical analysis have shown that the proposed method has
faster speed and more adaptability to small object shape and also yields improved SNR performance.
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1 Introduction

Because the features of multiscale small targets object such as shape, texture, moment, structure,

motion continuity and fractals are undeterministic and distinctness, most of the existing methods[1∼3]

based on shape, texture, and structure of the targets lose their validity. Even the fractal technique[4]

also can not provide satisfactory detection performance. Therefore, we proposed a dissimilarity measure

between object and its background to enhance the ratio of the signal to noise of small objects, and

increase the detectable probability[5] under low false alarm probability. In order to adapt real time image

processing applications to long-wave infrared offshore small-object images detection, a dissimilarity

measurement of one-dimensional average gray absolute difference maximum (1-D AGADM), and their

characteristic are discussed, then fast algorithm for multiscale small object detection in a nature scene

with a spatially independent and stable Gaussian random field is derived and tested.

2 Theory of small target detection

The methods of small target detection can be classified as

1) Minimum false probability-based methods, which are feasible when the probability distribution

of object and background can be known.

2) Constant false alarm probability-based methods, which are feasible when the probability dis-

tribution of a background can be known but the object distribution is undeterministic.

3) Constant detectable probability-based methods, which are valid when the probability distribu-

tion of an object can be known but the background distribution is undeterministic.

In order to improve the performance of small target detection, we propose an algorithm by using

average gray absolute difference maximum map (AGADMM) to enhance an object while capable of

reducing its background[6].

2.1 Definition of dissimilarity measure

As show in Fig. 1, set Θ and Ω denote the pixels in the internal window and pixels between

internal window and external window, respectively. If the size of external window is slightly bigger

than that of the object and internal window can be changed, then the AGADM can be defined as:

∆Dmax = max
∀Θ

{

∆D|∆D =

∣

∣

∣

∣

1

NΘ

∑

x∈Θ

Ix −
1

NΩ

∑

y∈Ω

Iy

∣

∣

∣

∣

}

(1)

1) Supported by the National Defense Science Foundation of P. R. China (51401020201JW0521)
Received September 26, 2003; in revised form October 30, 2004

Copyright c© 2005 by Editorial Office of Acta Automatica Sinica. All rights reserved.



428 ACTA AUTOMATICA SINICA Vol. 31

where NΘ , NΩ denote the numbers of pixels in set Θ and Ω , Ix and Iy denote the gray levels of pixel

x and y, respectively.

Fig. 1 Object and scene windows

It has been shown that AGADM has a low value if set Θ and Ω include only the pixels in a

background, and reach the largest response when set Θ and Ω cover only the pixels of an object and

background, respectively[6]. If the target shape is not square, then Θ includes the pixels of object Θo

and partial background Θb, that is,
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where NΘo
denotes pixels of object Θ , Īo, ĪbΘ , and ĪbΩ are the average gray values of the object, the

internal window, and external window, respectively. If the nature scene is a stable Gaussian noise, then

ĪbΘ ≈ ĪbΩ . ∆D reaches its extremum, when one of the following conditions holds.
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(Īo − ĪbΘ)
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From (3), if |Īo − ĪbΘ | � 0 and NΘo
� NΘ for an object with concave contour, then ∆D is small. From

(4), if NΘo
= 0 or Īo = ĪbΘ for no object, ∆D ≈ 0. In (5), when NΘo

, ∆D ≈ |Īo − ĪbΩ | and approaches

to the maximum value.

It is obvious that for an erose object, 2-D AGADM-based method has two serious problems. First,

when a target shape is abnormal such as rectangle and rotundity, the 2-D AGADM of the target is still

low. Second, computing complexity is very huge. For every point, we need to calculate two dimensional

average gray absolute difference for each internal window′s size in order to get its maximum value, so

the complexity increases quadraticly with the size of the window.

2.2 Characteristic of the dissimilarity measure

Actually, most small targets are not of square. In order to solve the problem of low object

dissimilarity measure, blur of object′s edge and the huge complexity, we split the two dimension windows

in Fig. 1 into three one-dimensional interval in Fig. 2. The dissimilarity measure in Fig. 2 is just the

same as that of the Fig. 1. Assuming the size of one dimensional external window is fixed, we can

estimate the maximum average gray absolute difference for various sizes of the set Θ . When Θ and Ω

only cover object and background, respectively, the average gray absolute difference can get maximum

value.

Fig. 2 1-D windows of object and scene
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Because the dissimilarity is computed for each size of one dimensional windows, the size of one

dimensional internal window can be changed to fit target region. So for abnormal target detection, one

dimensional window has more flexibility than two dimensional windows. For convenience, a rectangle

target is analyzed as shown in Fig. 3.

Fig. 3 The distribution of object and scene in inner and exterior windows

In Fig. 3, the inner and exterior windows are centered in point p, point q is not the pixel of an

object and the shadow window denotes object, broken line and real line windows are two dimensional

internal window and external window, respectively. Broken arrow and real arrow denote 1-D internal

window and external window centered in point p and q, Li and Le are the sizes of internal window and

external window, respectively. Assuming the regions of object and background are symmetrical, the

average gray absolute difference can be computed as

∆D =
Roi · Ḡo + (Ri − Roi) · Ḡb

Ri

−
Roe · Ḡo + (Re − Ri − Roe) · Ḡb

Re − Ri

(6)

where Roi and Roe denote the areas of object region between internal window and external window,

respectively, Ri and Re represent the area of 2-D internal window and external window, respectively,

Ḡb and Ḡo (Ḡo > Ḡb) are the average gray values of object and the background, respectively. For point

p and Roe = 0 the 2-D average gray absolute difference is

∆DP2 =
Roi

Ri

(Ḡo − Ḡb) (7)

while 1-D average gray absolute difference is computed as

∆DP1 = Ḡo − Ḡb (8)

Comparing (7) and (8), we get ∆DP2 < ∆DP1.

For point q, the two dimension average gray absolute difference is

∆Dq2 =
Roi · Ḡo + (Ri − Roi) · Ḡb

Ri

−
Roe + (Re − Ri − Roe) · Ḡb

Re − Ri

(9)

we have 0 < ∆Dq2 < Ḡo − Ḡb and 1-D average gray absolute difference is ∆Dq1 = 0.

For the 8 neighboring regions shown in Fig. 4, Le denotes the size of 1-D and 2-D windows, the

2-D average gray absolute difference method has false edge in neighboring regions 2 and 6, but no false

edge for 1-D average gray absolute difference method.

Because in object neighboring regions 1,3,5,7, Roi 6= Ri and Roe > 0 from (6), the 2-D average

gray absolute difference is greater than predefined threshold T , so the false edge appears while one 1-D

average gray absolute difference equals 0, so no false edge. But in object neighboring regions 4, 8, both

1-D and 2-D average gray absolute differences are above predefined threshold T and both get false edge.
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Fig. 4 The definition of 8-neighbour around object region

2.3 Algorithms of small object detection

One dimensional average gray absolute difference maximum algorithm (1-D AGADM)can be stated

as follows.

Step 1. For any point of an image, given the fixed size Le of an external window around the

point, the maximum and the minimum average gray absolute differences are

Ḡ max = 0, Ḡ min = 255

Step 2. If this point is the leftmost point of a row, let Ge = 0 and sum the gray values of all

pixels in the external windows into Ge, otherwise, go to Step 3;

Step 3. Subtract the gray value of the leftmost point of the previous external window from Ge

of the previous point, then add the gray of the rightmost point of the current external window.

Step 4. Let the size of an internal window Li = 3, sum the gray values of all pixels in the internal

window into Gi, let Ḡi max = 0.

Step 5. ∆Ḡ = Gi
∗
Le − Ge

∗
Li

(Le − Li)Li
, If ∆Ḡ > Ḡi max, then Ḡi max = Ḡi, else go to Step 6;

Step 6. Li = Li + 2, if Li < Le − 2, add the grays of the leftmost point and the rightmost point

in the internal window into Gi, go to Step 5, else go to Step 7;

Step 7. Set the gray of current point in the 1-D AGADM M to Ḡi max;

Step 8. If Ḡi max > Ḡ max, Ḡ max = Ḡi max; if Ḡi max < Ḡ min, Ḡ min = Ḡi max;

Step 9. All points of the image have been processed completely? If no, go to Step 2;

Step 10. Normalize Ḡ and Ḡ into 255 and 0, respectively;

Step 11. Return.

3 Algorithm performance analysis

3.1 Computational complexity

To clarify the validity of the algorithm, the following paragraphs will discuss the comparison of

computational complexity, signal-to-noise gain, and ROC curve of 1-D AGADM-based algorithm with

that of 2-D ADADM-based algorithm[5], median contrast filter[6], and multi-level filter algorithm[7].

Assume that the image is an r∗c matrix, and the size of the outside window is Le. When the outside

window is shifted pixel by pixel, the gray sum of the last outside window can be utilized to estimate

that of the current outside window by only adding or subtracting a pixel value. 1-D AGADM-based

algorithm needs the number of r∗[Le + 2∗(c − 1)] additions for a outside window. Similarly, adding

number for the inside window is r∗c∗(Le − 2). As a result, 1-D AGADM algorithm needs number of

additions of r∗[(c+1)Le−2]. For 2-D AGADM algorithm, there are additions of r∗Le∗[Le+2∗ (c−1)]

and r∗c∗(Le − 2)2 for the outside window and inside window, respectively. Moreover, their numbers of

multiplication are the same, having a value of r∗c∗4.

Define computation complexity, C, for each pixel as operations of the whole image (including

additions and multiplications) divided by the number of the whole image′s pixels. In Fig. 5, the rela-

tionship between the computational complexity for 1-D AGADM and 2-D AGADM as a function of Le

is curved. It can be observed that when the size of the outside window is increased, complexity of the
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2-D AGADM increases rapidly while 1-D AGADM just changes slightly and thus has great advantage

in complexity.

Fig. 5 Computational complexity per pixel of 1-D AGADM and 2-D AGADM

Table 1 The performance comparison of four algorithms of small object detection

(original image size 200×196, SNR 0.31)

1D AGADM 2D AGADM Median Multi-level

Computation time (ms) 1452 4356 2053 1252

Shape adaptability good better common bad

SNR 3.83 4.26 0.63 0.28

3.2 Signal-to-noise ratio gain

It has been known that the performance of detection algorithms is highly dependent on the signal-

to-noise ratio of images, so we can use the ratio Gs of the original image to the processed image as a

performance measurement, which can be estimated as

Gs =
SNRr

SNRo

(10)

where SNRo and SNRr are the signal-to-noise ratio of the original image and the processed image,

and can be defined as follows.

SNR =
|mo − mb|
√

σ2
b + σ2

o

(11)

where mb, mo, σo and σb stand for mean of an object, its background, deviation of object region, and

background region, respectively.

Four object detection algorithms mentioned above have been tested with 10 different images of

long-wave infrared offshore small-object and their changed versions by adding noise with different means

and deviations. Fig. 6 represents the signal-to-noise ratio gains of those algorithms as a function of the

input image signal to noise ratio for the fixed size object.

Fig. 6 Relationship between SNR gain and SNR of original images
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3.3 Analysis of experimental results

Figs. 7 (a)∼(i) give a typical 200×196 image of long-wave infrared offshore small-object, and its

filtered and segmented results. From Fig. 7, we know both median filtering and multi-level filtering al-

gorithms have higher false alarm probability and 2-D AGADM can reduce noise greatly while enhancing

object but with a rough contour. It has been shown from experimental results that 1-D AGADM al-

gorithm can reduce noise and enhance object with an exact contour, and have lower complexity and

shape adaptability.

Fig. 7 Original image and its results of object detection

3.4 Receiver operating characteristic

For constant false alarm probability criterion, we can estimate the detection thresholds at various

false alarm probability Pf, compute the detection probability Pd statistically, then depict a detection

probability curve as a function of false alarm probability, which is called ROC curve. Four small target

detection algorithms have been tested with 10 long wave infrared images of small targets and their ROC

are computed and shown in Fig. 8.
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Fig. 8 The ROC curves of object detection algorithms

4 Conclusion

It has been shown that with an exception of slightly low SNR, this proposed algorithm has ad-

vantages of speed, shape adaptability over 2-D AGADM, and a greater SNR than the median filter

and the multi-level filter algorithm, and can detect small targets with irregular shapes in a stable ob-

ject/background image correctly. Finally, we can also use a smooth filter to reduce isolated noises and

use shape features for false target identification.
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