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Abstract A successive approximation approach for designing optimal controllers is presented for
discrete linear time-delay systems with a quadratic performance index. By using the successive

approximation approach, the original optimal control problem is transformed into a sequence of
nonhomogeneous linear two-point boundary value (TPBV) problems without time-delay and time-

advance terms. The optimal control law obtained consists of an accurate feedback terms and a

time-delay compensation term which is the limit of the solution sequence of the adjoint equations.
By using a finite-step iteration of the time-delay compensation term of the optimal solution sequence,

a suboptimal control law is obtained. Simulation examples are employed to test the validity of the
proposed approach.
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1 Introduction

The optimal control for discrete control systems with time-delay is an important task in the control

theory. It is difficult to solve the optimal control problem for time-delay systems with the quadratic

performance indices, which has attracted the interest of many researchers from the mathematical and

control community[1,2]. We may transform the discrete time-delay systems into equivalent higher order

systems in mathematics, but two new problems may arise. First, the order of the transformed system

would increase by the product of the time-delay and the order of the systems. For some long time-

delay or high order systems, the computing work would increase exponentially, i.e., the “dimension

disaster” may arise. Thus, the above method can only be applied to some small time-delay or low order

systems[3]. Second, after the transformation the system may not maintain its controllability and/or

observability, and the Riccati equation fails to satisfy the conditions of the optimal solution. According

to the necessary optimality conditions, the optimal control problem for discrete linear time-delay systems

with a quadratic performance index may lead to a discrete linear two-point boundary value (TPBV)

problem in which both time-delay (in state) and time-advance (in co-state) terms are involved. To

find the optimal solution is a very difficult undertaking. To avoid the computational difficulties in

solving the optimal control law, the optimal guaranteed-cost control problem[4,5] has recently received

considerable attention. But the control algorithm cannot guarantee an optimal level of performance.

Therefore, it is more practical to find new approximate methods offering tradeoffs between computation

complexity and precision. Most often the TPBV problem is solved by approximate methods leading to

a suboptimal solution[6∼8].

A successive approximation approach is presented for the optimal control of discrete linear time-

delay systems with a quadratic performance index. In the approach presented we consider the time-

delay terms in the state equation of the system as external disturbance inputs. A sequence of non-delay

discrete linear systems are constructed whose solution sequence uniformly converges to the solution of

the original discrete time-delay system. Thus, the time-delay optimal control problem is transformed

into solving an optimal control sequence of non-delay systems. By using a finite-step iteration of the

time-delay compensation term in the optimal solution sequence, we obtain a suboptimal control law.

Simulations show that the algorithm proposed can reduce computation and is easily implemented within

the given precision.
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2 Problem statement

Consider the discrete linear system with state delay described by

x(k + 1) = Ax(k) + A1x(k − h) + Bu(k), k = 0, 1, 2, · · ·

x(k) = ϕ(k), k = −h,−h + 1, · · · , 0 (1)

where x ∈ Rn, u ∈ Rr are the state vector and the control vector, respectively; A, A1 and B are

constant matrices of appropriate dimensions, ϕ(k) is the initial state function, and h ∈ N = {1, 2, · · ·}

is a positive integer time-delay.

The quadratic performance index of system (1) is selected as

J =
1

2
x

T(N)Qfx(N) +
1

2

N−1
∑

k=0

[xT(k)Qx(k) + u
T(k)Ru(k)] (2)

where R ∈ Rr×r is a positive-definite matrix, Q, Qf ∈ Rn×n are positive-semidefinite matrices. The

original system′s optimal control problem is to find a control law u∗(k) such that the quadratic perfor-

mance index (2) is minimized, while satisfying the dynamic equality constraint (1).

It is well known that the optimal control problem (1) and (2), by using the necessary optimality

conditions, may lead to the following TPBV problem

λ(k) =

{

Qx(k) + ATλ(k + 1) + AT
1 λ(k + h + 1), k = 0, 1, 2, · · · , N − h − 1

Qx(k) + ATλ(k + 1), k = N − h, N − h + 1, · · · , N − 1

x(k + 1) = Ax(k) + A1x(k − h) − BR−1BT
λ(k + 1), k = 0, 1, 2, · · · , N − 1

x(k) = ϕ(k), k = −h,−h + 1, · · · , 0

λ(N) = Qfx(N) (3)

The optimal control law can be described by

u(k) = −R−1BT
λ(k + 1) (4)

The TPBV problem in (3) involves both time-delay term x(k−h) and time-advance term λ(k +h+1),

thus to find its exact solution is very difficult. In this paper, we will introduce a successive approximation

approach to solve the optimal control problem of (1) and (2).

3 Preliminaries

We first propose two useful preliminary lemmas.

Lemma 1. The follow inequality holds

k
∑

i=1

ij 6
(k + 1)j+1

j + 1
, j = 0, 1, 2, · · · ; k ∈ N (5)

Proof. According to the Riemann integral definition, one gets

1

k + 1

k
∑

i=1

(

i

k + 1

)j

6

∫ 1

0

xjdx =
1

j + 1
, j = 0, 1, 2, · · · ; k ∈ N (6)

The proof is complete. �

Consider autonomous discrete linear time-varying systems with time-delay described by

x(k + 1) = G(k)x(k) + G1(k)x(k − h), k = 0, 1, 2, · · · , N − 1

x(k) = ϕ(k), k = −h,−h + 1, · · · , 0 (7)

where x ∈ Rn is the state vector, ϕ(k) is the initial state vector, G, G1 are time-varying matrices of

appropriate dimensions, Define the vector function sequence {x(j)} as

x
(0)(k) =

k
∏

m=1

G(k − m)ϕ(0)
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x
(j)(k) =

k
∏

m=1

G(k − m)ϕ(0) +

k−1
∑

i=0

[

k−i−1
∏

m=1

G(k − m)
]

G1(i)x
(j−1)(i − h) (8)

x
(j)(k) = ϕ(k), k = −h,−h + 1, · · · , 0; j ∈ N

where
0

∏

m=1

G(k − m) = I , I is the unit matrix.

Lemma 2. The sequence {x(j)} described by (8) uniformly converges to solution of the system

(7).

Proof. From (8), we have

x
(1)(k) − x

(0)(k) =

k−1
∑

i=0

[

k−i−1
∏

m=1

G(k − m)
]

G1(i)x
(0)(i − h) =

h
∑

i=0

[

k−i−1
∏

m=1

G(k − m)
]

G1(i)ϕ(i − h) +

k−1
∑

i=h+1

[

k−i−1
∏

m=1

G(k − m)
]

G1(i)
[

i−h
∏

m=1

G(i − h − m)
]

ϕ(0)

(9)

Let

ā = sup
k∈[0,N)

{
∥

∥

∥

∥

k−i−1
∏

m=1

G(k − m)

∥

∥

∥

∥

, i = 0, 1, · · · , k − j

}

a = max{1, ā}, b = sup
k∈[0,N]

‖G1(k)‖, c = sup
k∈[−h,0]

‖ϕ(k)‖ (10)

where ā, a, b and c are some positive scalar constants. From (9) and (10), we have

‖x(1)(k) − x
(0)(k)‖ 6 abc[(h + 1) + a(k − h − 1)] 6 a2bck (11)

Similarly,

‖x(2)(k) − x
(1)(k)‖ 6 ab

k−1
∑

i=1

‖x(1)(i) − x
(0)(i)‖ 6 a3b2c

k−1
∑

i=1

i 6 a3b2c
k2

2!
(12)

By analogy and according to Lemma 1, one gets

‖x(j)(k) − x
(j−1)(k)‖ 6

k−1
∑

i=1

ab‖x(j−1)(i − h) − x
(j−2)(i − h)‖ 6

aj+1bjc

(j − 1)!

k−1
∑

i=1

ij−1
6 aj+1bjc

kj

j!
, j ∈ N

(13)

From (13) and applying trigonometry inequality, it follows that

‖x(j+l)(k) − x
(j−1)(k)‖ 6 ac

j+l
∑

i=j

(abk)i

i!
, ∀j, l ∈ N (14)

For sequence {x(j)(k)}, once k has been fixed in (14), k is considered as a parametric variable. Inequality

(14) implies

lim
k→∞

‖x(j+l)(k) − x
(j−1)(k)‖ = 0, ∀k, l ∈ N (15)

Therefore, when k is fixed, {x(j)(k)} is a Cauchy sequence, i.e., the sequence is uniformly convergent[9].

From (7) and (8) we obtain

x(k) =

k
∏

m=1

G(k − m)ϕ(0) +

k−1
∑

i=0

[

k−i−1
∏

m=1

G(k − m)
]

G1(i)x(i − h)

x(k) = ϕ(k), k = −h,−h + 1, · · · , 0 (16)

Since l in (14) is arbitrary, the limit of sequence (8) uniformly converges to (16), and the limit of

sequence {x(j)(k)} is clearly the solution to system (7). �
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4 Design of suboptimal control law

Construct the following TPBV problem sequence

x
(0)(k) = λ

(0)(k) = 0

λ
(j)(k) =

{

Qx(j)(k) + ATλ(j)(k + 1) + AT
1 λ(j−1)(k + h + 1), k = 0, 1, 2, · · · , N − h − 1

Qx(j)(k) + ATλ(j)(k + 1), k = N − h, N − h − 1, · · · , N − 1

x
(j)(k + 1) = Ax

(j)(k) + A1x
(j−1)(k − h) − BR−1BT

λ
(j)(k + 1) (17)

x
(j)(k) = ϕ(k), k = −h,−h + 1, · · · , 0

λ
(j)(N) = Qfx(N), j ∈ N

and the j-th iterative optimal control law is

u
(j)(k) = −R−1BT

λ
(j)(k + 1), j ∈ N (18)

For the optimal control problem (1) with the quadratic performance index (2), we propose the

following results based on a successive approximation approach.

Theorem 1. The optimal control law of (1) with the quadratic performance index (2) is

u
∗(k) = −S−1(k + 1)BTP (k + 1)[Ax(k) + A1x(k − h) + lim

j→∞

g
(j)(k + 1)] (19)

where S(k +1) = R +BTP (k +1)B, the matrix P (k) is the unique positive-semidefinite solution of the

following Riccati matrix difference equation

P (k) = AT[I − P (k + 1)BS−1(k + 1)BT]P (k + 1)A + Q, P (N) = Qf (20)

and the j-th adjoint vector g(j)(k) is the solution to the following adjoint vector difference equations

g
(0)(k) = g

(1)(k) = 0

g
(j)(k) =



















AT[I − P (k + 1)BS−1(k + 1)BT][g(j)(k + 1) + P (k + 1)A1x
(j−1)(k − h)]+

AT
1 P (k + h + 1)x(j−1)(k + h + 1) + AT

1 g(j−1)(k + h + 1), k = 0, 1, 2, · · · , N − h − 1

AT[I − P (k + 1)BS−1(k + 1)BT][g(j)(k + 1) + P (k + 1)A1x
(j−1)(k − h)],

k = N − h, N − h + 1, · · · , N − 1

g
(j)(N) = 0, j = 2, 3, · · · (21)

where x(j−1) in (21) can be solved by the following equations

x
(0)(k) = 0, k = −h,−h + 1, · · · , 0, 1, · · ·

x
(j−1)(k + 1) = [I + BR−1BTP (k + 1)]−1[Ax

(j−1)(k) + A1x
(j−2)(k − h) − BR−1BT

g
(j−1)(k + 1)]

x
(j−2)(k) = ϕ(k), k = −h,−h + 1, · · · , 0; j = 2, 3, · · · (22)

Proof. By Lemma 2, the solution sequence of the TPBV problems in (17) uniformly converges

to the solution of the optimal solutions of (1) and (2). To decouple TPBV problems in (17), let

λ
(j)(k) = P (k)x(j)(k) + g

(j)(k), j = 0, 1, 2, · · · (23)

Using the final equation in (17) and (23), it follows that

g
(j)(N) = 0 (24)

From (17), (18) and (23) we can obtain (20), (21), (22) and the jth optimal control law

u
(j)(k) = −S−1(k + 1)BTP (k + 1)[A1x

(j)(k) + A1x
(j)(k − h)] − S−1(k + 1)BT

g
(j)(k + 1) (25)

By Lemma 2, the optimal control law of (1) and (2) is as follows

u
∗(k) = lim

j→∞

u
(j)(k) = −S−1(k + 1)BTP (k + 1)[Ax(k) + A1x(k − h) + lim

j→∞

g
(j)(k + 1)] (26)
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The proof is complete. �

Remark 1. From (21), we have

g
(0)(k) = g

(1)(k) = 0, g
(j)(k) =

N−k−1
∑

i=0

Āi−1
f

(j−1)(k + i), j = 2, 3, · · · (27)

where

Ā = AT − ATP (k + 1)BS−1(k + 1)BT

f
(j)(k) =











AT
1 P (k + h + 1)x(j)(k + h + 1) + AT

1 g(j)(k + h + 1)+

ATP (k + 1)[A1 − BS−1(k + 1)BTP (k + 1)A1], k = 0, 1, 2, · · · , N − h − 1

ATP (k + 1)[A1 − BS−1(k + 1)BTP (k + 1)A1], k = N − h, N − h + 1, · · · , N − 1(28)

Therefore, the adjoint equations in (21) can be replaced with those in (27).

In fact, it is almost impossible to obtain g(∞)(k + 1) in (19). We may, in practical applications,

get a suboptimal control law by replacing ∞ with a finite positive integer M in (19). Therefore the

Mth order suboptimal control law can be obtained as follows.

uM (k) = −S−1(k + 1)BTP (k + 1)[Ax(k) + A1x(k − h)] − S−1(k + 1)BT
g

(M)(k + 1) (29)

The computational procedure to determine the j-th order suboptimal control law can be summa-

rized as follows.

Algorithm 1.

Step 1. Solve P (k) from Riccati matrix difference equation (20). Let J0 = ∞, j = 1, x(0)(k) =

g(0)(k) = g(1)(k) = 0. Give some positive constant ε > 0.

Step 2. Obtain the jth adjoint vector g(j)(k) from (21) or (27).

Step 3. Letting M = j, Calculate uM (k) from (29).

Step 4. Calculate JM from

JM =
1

2
x

T(N)Qfx(N) +
1

2

N−1
∑

k=0

{xT(k)Qx(k) + [uM (k)]TRuM (k)} (30)

Step 5. If |(JM −JM−1)/JM | < ε then stop and output uM (k), else calculate the j-th order state

vector x(j)(k) from (22).

Step 6. Letting j = j + 1, go to Step 2.

Remark 2. x(k) and x(k − h) in the first term in (29) are the accurate solutions. Only the

second term g(M)(k+1) in (29) is the M -th iterative result in place of g(∞)(k+1), thus the suboptimal

control law uM (k) is closer to the optimal control law u∗(k) than the M -th iterative optimal control

u(M)(k).

Remark 3. From the proof of Lemma 2, the finite time N in quadratic performance index (2)

can be very large. In practical control system, if the finite time N is sufficiently large, we can take

N → ∞ as true. Therefore, the algorithm mentioned above is compatible to the situation as N → ∞.

Thus the quadratic performance index (2) can be transformed to

J =
1

2

∞
∑

k=0

[xT(k)Qx(k) + u
T(k)Ru(k)] (31)

If (A, B) and (A,Q
1

2 ) are controllable and observable, respectively, the Riccati matrix difference equa-

tion in (20) can be transformed into the following discrete Riccati matrix equation

ATPA − P − ATPBS−1BTPA + Q = 0 (32)

where the unique positive-definite matrix P is a constant matrix.

Correspondingly, the time-varying matrix P (·) in each expression can be substituted by constant

positive-definite matrix P , the j-th adjoint vector g(j)(k) can be found from the following equations

g
(0)(k) = g

(1)(k) = 0
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g
(j)(k) = AT[I − PBS−1BT][g(j)(k + 1) + PA1x

(j−1)(k − h)]+

AT
1 Px

(j−1)(k + h + 1) + AT
1 g

(j−1)(k + h + 1), k = 1, 2, · · ·

g
(j)(N) = 0, j = 2, 3, · · · (33)

The state vector x(j−1) in (33) is the solution to the followings

x
(0)(k) = 0

x
(j−1)(k + 1) = [I + BR−1BTP ]−1[Ax

(j−1)(k) + A1x
(j−2)(k − h) − BR−1BT

g
(j−1)(k + 1)]

x
(j−2)(k) = ϕ(k), k = −h,−h + 1, · · · , 0, j = 2, 3, · · · (34)

In this case, the computational procedure to determine the j-th order suboptimal control law is similar

to Algorithm 1.

5 Simulation examples

Consider a second-order discrete linear system with time-delay described by
[

x1(k + 1)

x2(k + 1)

]

=

[

1 0.57

0.9 2.5

] [

x1(k)

xx(k)

]

+

[

0.4 0.228

0.36 1

] [

x1(k − h)

x2(k − h)

]

+

[

0

1

]

u(k)

x(k) = [1 0]T, k = −h,−h + 1, · · · , 0 (35)

The quadratic performance index is selected as

J =
1

2

∞
∑

k=0

(x2
1(k) + x2

2(k) + u
2(k)) (36)

For time-delay h = 1, the simulation results and the performance index values with respect to the

iteration times j = 1, 2, 3, 4 are shown in Fig. 1 and listed in Table 1, respectively. It is obvious that

J1 > J2 > J3 > J4. If ε = 0.01, we obtain |(J4 − J3)/J4| = 0.0068 < ε. Thus u4(k) may be considered

as a suboptimal control law. Fig. 1 and Table 1 show the algorithm is valid for the optimal control of

discrete linear time-delay systems. It is clear that the more the iteration times, the better the control

precision. With the increase of the iteration times, the errors of the curves are smaller and smaller,

which indicates the suboptimal control law is close to the optimal control law sufficiently.

Fig. 1 Simulation curves of the system when h = 1
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Table 1 Performance index values at the different iteration times when h = 1

iteration time j 1 2 3 4

performance index value JM 18.1550 11.0616 10.1822 10.1138

In order to make a further study on the relations between time-delays and convergent speed, we

consider the performances at the different time delays of h. When M = 4, the simulation results of

different time delays are shown in Fig. 2, and the performance index values are listed in Table 2.

Fig. 2 Simulation curves of the system when M = 4

Table 2 Performance index values at different delays when M = 4

time-delay h 1 2 3 4 5

performance index value JM 10.1138 10.8078 11.3501 11.8916 12.4897

Fig. 2 and Table 2 show that with the increase of the time delay, the settling time of the system

increases correspondingly. Note that too more iterations would affect the computing speed of the

systems, thus it is more practical to find a tradeoff between the iteration times and the precision.

6 Conclusion

In this paper, a successive approximation approach for the optimal control of a discrete linear

system with state delay is presented. It is clear that the errors of the suboptimal control law mainly

come from the results of the truncation of g(M)(k). The smaller of the delay is, the smaller the errors

would be, which make the suboptimal control trajectory very close to the theoretic optimal control law,

and the iteration times M can be smaller accordingly. Thus the computing work can be reduced. An

example is given to test the validity of the algorithm. The results show that the algorithm is easy to

implement, the convergence speed is high, and the computing work is small.
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