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Abstract When dealing with pattern recognition problems one encounters different types of prior
knowledge. It is important to incorporate such knowledge into classification method at hand. A very
common type of prior knowledge is many data sets are on some kinds of manifolds. Distance based
classification methods can make use of this by a modified distance measure called geodesic distance.
We introduce a new kind of kernels for support vector machines which incorporate geodesic distance
and therefore are applicable in cases such transformation invariance is known. Experiments results
show that the performance of our method is comparable to that of other state-of-the-art method.
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1 Introduction

Support vector machine (SVM) is a new promising pattern classification technique proposed

recently by Vapnik and co-workers[1∼2]. Unlike traditional methods which minimize the empirical

training error, SVM aims at minimizing an upper bound of the generalization error through controlling

the margin between the separating hyperplane and the data.

Like neural networks, SVM also employs a distance function to determine how close an input vector

is to each stored data[3]. As mentioned in [4], a variety of distance functions are available, including the

Minkowsky, Mahalanobis, Camberra, Chebychev and Chi-square distance metrics. Although so many

distance functions have been proposed, by far the most commonly used is the Minkowsky distance of

which Euclidean distance is the most special case. The choice of distance function influences the bias

of a learning algorithm. A bias, as a rule or method that causes an algorithm to choose one generalized

output over another, is a must to the algorithm for generalization. It has been shown that no learning

algorithm can generalize more accurately than any other when all possible problems are taken into

account. It follows then that no distance function can be strictly better than any other in terms of

generalization ability, when all possible problems are considered with equal probability. Consequently,

an appropriate distance function should be selected according to data sets. Especially for those data

points which lie in a manifold, Euclidean distance can not reflect the real distance between two points.

In 2000, Tenenbaum proposed geodesic distance[5]. The basic idea is that for a neighborhood of

points on a manifold the Euclidean distances provide a fair approximation of geodesic distance. For

faraway points the geodesic distance is estimated by the length of the shortest path through neighboring

points.

In this paper, we focus on the design of SVM based on geodesic distance. We first propose an

improved geodesic distance to eliminate isolated embeddings. And then the geodesic distance is applied

in the kernel of SVM. Experiments show that good generalization can be obtained using the revised

SVM.

2 Minkowski metric and its limitations

The Minkowski metric[6] is widely used for measuring similarity between points. Suppose two

points x and y are represented by two p dimensional vectors (x1, x2, . . . , xp) and (y1, y2, . . . , yp), re-

spectively, the Minkowski metric d(x, y) is defined as

d(x, y) =

( p
∑

i=1

|xi − yi|
r

) 1

r

(1)
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where r is the Minkowski factor for the norm. Particularly, when r is set as 2, it is the well known

Euclidean distance. A variant of the Minkowski function, the weighted Minkowski distance function,

has also been used to measure point similarity. By assigning each feature a weighting coefficient, the

weighted Minkowski distance function is defined as

dw(x, y) =

( p
∑

i=1

wi|xi − yi|
r

) 1

r

(2)

However, in some cases, Minkowski distance does not reflect the intrinsic similarity.

Fig. 1 Distance between two points on a manifold

As Fig. 1 shows, for two arbitrary points (circled) on a nonlinear manifold, their Euclidean distance

in the high-dimensional input space (length of dashed line) may not accurately reflect their intrinsic

similarity which is illustrated by solid curve.

3 Revised geodesic distance

3.1 Constructing the geodesic distance path

Tenenbaum proposed a new algorithm for estimating geodesic distances. The basic idea is that,

for a neighborhood of points on a manifold, the Euclidean distances provide a fair approximation of

geodesic distance and for faraway points, the geodesic distance is estimated by the length of the shortest

path through neighboring points.

Fig. 2 Inaccuracy of Euclidean distance compared with geodesic distance

Let a, b and c be given samples from a manifold structure. One does not assume to know the

true manifold which would be the curve in this example. The geodesic distances gab and gbc would

be measured along the manifold while dab, dbc and dac denote the Euclidean distances. The aim of

describing relations between the points is to take the assumed manifold structure into consideration.

Therefore one tries to estimate the geodesic distance for a given set of points. As one can see from this

example, the geodesic distance between neighboring points can be approximated fairly well by their

Euclidean distance, so that ĝab = dab and ĝbc = dbc. The geodesic distance between a and c would be

gac = gab + gbc for which ĝac = dab + dbc is a far better approximation than dac. So for neighboring

points the geodesic distance is approximated by Euclidean distance and for distant points one considers

the length of the shortest path through neighboring points.
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The geodesic distance algorithm proceeds in two steps based on this idea. Let X be a (m ×

n) matrix representing m samples in n dimensions and it can be assumed that the points lie on a

submanifold of Rn. In the first step the Euclidean distance matrix Dij = d(xi, xj) is computed and for

each xi ∈ X a set of neighboring points Z(xi) is determined by

Z(xi) = {xj |xj ∈ X is neighbor of xj}

Several variants for defining neighborhood relations can be used. These relations are used to

construct the undirected neighborhood path, which will be represented by an (m × m) adjacency

matrix G. The adjacency matrix G is initialized with connections between neighbors, weighted by

their Euclidean distance

Gij =

{

d(xi, xj) if i ∈ Z(xj) or j ∈ Z(xi)

∞ if xi and xj are not neighbored
(3)

where ∞ just denotes that two points are not connected. Since the graph is undirected the adjacency

matrix has to be symmetrized Gij = min(Gij , Gji) which clarifies the symmetry of the neighborhood

relation.

In the second step, the geodesic distances for the points that are not connected directly are

estimated by the length of the shortest path in G between them. Computationally this is a standard all-

pairs-shortest-path problem for which several algorithms are available. In this paper, a Floyd-Warshall

algorithm will be used. If we apply the algorithm to G, the resulting value of Gij is the length of the

shortest path and so the approximated geodesic distance between the vertices representing xi and xj ,

if such a path exists.

3.2 Connecting subgraphs

Problems arise when the graph is not connected as a result of uncontinuous sampling, an ina-

dequate construction of neighborhoods or structural breaks in the data. In that case the construction

of neighborhoods has to be modified or additional connections have to be made until the all-pairs-

shortest-path procedure gives a connected graph adjacent matrix (∀i, j : Gij 6= ∞), which then is the

matrix of estimated geodesic distance.

Fig. 3 (a) shows the resulting graph that is unconnected. In this situation, Tenenbaum chooses

only the largest component for embedding. Since this method works only when the largest component

covers most of the training samples with the implication that the remaining points would be discarded,

this alternative will lose part of information. When each subgraph contains nearly equal number of

points, the largest component can not substitute for the whole sample space. So errors may occur. In

this paper, we choose to link the subgraphs and take all points into consideration.

Fig. 3 Shortest paths on manifold

To link the subgraphs algorithmically, the simplest method to ensure the connectedness is the

“single linkage” method. Suppose xi and xj are in two unconnected subgraphs respectively which show

the smallest Euclidean distance Dij among all unconnected points. We link the two points and their

connection can be penalized by enlarging the corresponding length in G. For example, in this paper,

we set its length Lij in proportion to Dij and the maximal value g in every subgraph. Then we have
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to update the distance in G. Note that this does not require a full run of an all-pairs-shortest-path

procedure, since if two points are connected yet, the shortest path between them must include the new

connection between xi and xj . Thus for all pairs xa, xb of previously unconnected points we have to

compute

Gab = min(Gai + Lij + Gjb, Gaj + Lij + Gib) (4)

If some Gab = ∞ still remains, the procedure has to be repeated until all points are in one subgraph.

3.3 Supervised geodesic distance

Until now, geodesic distance has been used as an unsupervised technique. However, we can take

the classification information into consideration. The geodesic distance problem can easily be rephrased

to use class label information, ωi ∈ Ω(|Ω | = c) with each xi, during training. The idea is to find a

mapping separating within-class structure from between-class structure. The easiest way to do this is

to select the neighbors just from the class that xi itself belongs to.

A slightly complicated method is to use the distance matrix formulation as in (4), but it adds

distance between samples in different classes

G
′ = G + µ max(G)4

where 4jm = 1 if ωj 6= ωm, and 0 otherwise. In this formulation, µ ∈ [0, 1] controls the amount to

which class information should be incorporated. A data set is created in which there are “disconnected”

classes, each of which should be connected by geodesic distance. These added degrees of freedom are

used to separate the classes.

4 Training SVM with geodesic distance

Support vector machines[7] are a general class of learning architecture inspired from statistical

learning theory that perform structural risk minimization on a nested set structure of separating hyper-

planes. Given a training data, the SVM training algorithm obtains the optimal separating hyperplane

in terms of generalization error.

The support vector algorithm. Suppose we are given a set of examples (x1, y1), . . . , (x1, y1) ∈

RN . yi ∈ {−1, +1}. We consider functions of the form sgn((w × x) + b), in addition we impose the

condition

inf
i=1,···,l

|(w × xi) + b| = 1 (5)

We would like to find a decision function fw,b with the properties fw,b(xi) = yi; i = 1, . . . , l. If

this function exists, condition (5) implies

yi((w × xi) + b) > 1, i = 1, . . . , l (6)

In many practical situations, a separating hyperplane does not exist. To allow for possibilities

violating Equation (6), slack variables are introduced

ξi > 0, to get yi((w × xi) + b) > 1 − ξ, i = 1, . . . , l (7)

The support vector approach to minimize the generalization error consists of the following.

Minimize Φ(w, ξ) = (w × w) + γ

l
∑

i=1

ξi (8)

subject to the constraints (7).

It can be shown that minimizing the first term in (8) amounts to minimizing the VC-dimension,

and minimizing the second term corresponds to minimizing the misclassification error[7]. The mini-

mization problem can be posed as a constrained quadratic programming (QP) problem. The solution

gives rise to a decision function of the form f(x) = sgn
[

l
∑

i=1

yiai(x × xi) + b
]

.

Only a small fraction of the ai coefficients are non-zero. The corresponding pairs of xi entries are

known as support vectors and fully define the decision function. The support vectors are geometrically
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the points lying near the class boundaries. Nonlinear kernels, as well as linear kernels, can be used for

SVM.

4.1 Geodesic distance for kernel functions

Kernel functions are used in SVM. A possible interpretation of their effects is that they represent

dot products in some feature space, i.e.,

k(xi, xj) = φ(xi) × φ(xj) (9)

where φ is a map from input (data) space X into F . Another interpretation is to connect φ with the

regularization properties of the corresponding learning algorithm. Most popular kernels are translation

invariant kernels

k(xi, xj) = k(xi − xj) (10)

Usually, this kind of kernels can be expressed as k(xi, xj) = f(d(xi, xj)). Then the distances

D can be used to compute a feature space Gram matrix by Kij = f(Dij). Compare with Euclidean

distance, geodesic distance reflects the intrinsic similarity. In this paper, we use geodesic distance to

measure similarity. Thus kernel function becomes Kij = f(Gij). In the experiments, RBF kernel is

taken. So k(xi, xj) = exp(−
g(xi, xj)

2δ
2 ).

4.2 Computing geodesic distance for new observations

When geodesic distance is used as data processing in a classification task, the ability to compute

geodesic distance is essential for classifying previously unseen instances. Let Xl be the training set.

The task is to find geodesic distance of an additional instance xt ∈ Rnl relative to the points in Xl.

Let Gl be the matrix of estimated geodesic distances computed from Xl. The geodesic distances

of the instance xt towards all points in Xl can be estimated as follows. First the (m × 1) vector dt of

Euclidean distances between the test observation xt and the points in the training set Xl is calculated.

Then the neighborhood Z(xt) of xt is determined using the same neighborhood rule as is used for the

initialization of Gl. So the geodesic distance between xt and xi can be estimated by

g(xt, xi) = min
j:xj∈Z

(Gij + d(xj , xt))

4.3 Computational complexity

What makes geodesic distance algorithm more practical in terms of processing time is that it can

be optimized by using Dijkstra′s algorithm for the computation of shortest paths in a graph. Compared

with Euclidean distance, the standard geodesic distance algorithm tends to have more computational

complexity. One has to calculate the l×l shortest-path distance matrix Gl. The simplest way is Floyd′s

algorithm with a complexity of O(l3). Dijkstra′s algorithm is very significant, because this optimization

reduces the processing time from the order of hours to the order of minutes, even to seconds. Such

a reduction in time is explainable by observing that the time complexity for Dijkstra′s algorithm is

O(l log l +E), where l is the number of vertices and E is the number of edges. For meshes with O(103)

vertices, exact geodesics can be computed in about 25 seconds on a 633-MHz Celeron II PC.

Moreover, training an SVM requires the solution of a very large quadratic programming (QP)

optimization problem. For datasets of O(103) samples, it will cost nearly 163 seconds to solve the QP

problem. So the computational time of geodesic distance has a small part in the whole training time

of SVM. Once the training process is finished, the SVM can be used in online classification tasks. One

will have to compute the geodesic distances of a testing sample to all of the training samples. Instead of

re-computing the geodesic distance matrix, section 4.2 introduces a new method to solve this problem

and speeds up the computation greatly.

5 Numerical results and comparisons

The revised SVM algorithm is tested against a standard SVM learning algorithm on a series of

benchmarks. Both algorithms are written in C++, using microsoft Visual C++ 6.0 compiler. Both

algorithms are run on a 633 MHz Celeron II processor running Windows 2000. The CPU time for both

algorithms is measured. The CPU time covers the execution of the entire algorithm, including kernel

evaluation time, but excluding file I/O time.
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Experiment 1. A two-spiral problem The two-spiral problem[8] is a well-known benchmark

problem for testing the quality of neural network classifiers. In this experiment (Fig. 4) we illustrate a

support vector machine using geodesic distance on a two-spiral problem. The training data are shown

in Fig. 4 with two classes indicated by ‘o′ and ‘∗′ (100 points with 50 for each class) in a two-dimensional

input space. Points in between the training data located on the two spirals are often considered as test

data for this problem but are not shown in the figure.

The excellent generalization performance is clear from the decision boundaries shown in the figure.

In this case δ = 1 and γ = 10 are chosen as parameters.

Fig. 4 A two-spiral classification problem with the two classes indicated by ‘o′ and ‘∗′

Experiment 2. Real data sets In order to compare the classification accuracy of the new

methods on massive data sets, we test this algorithm on three real-world data sets.

In this experiment, we adopt the same data sets used in [9]. That is, we choose the Boston

Housing and the Abalone dataset from the UCI Repository (Blake et al., 1998) and the USPS database

of handwritten digits. The first data is of size 506 (350 training, 156 testing), the Abalone dataset of

size 4177 (3000 training and 1177 testing). In the first two cases the data was rescaled to zero mean

and unit variance, coordinate-wise, while the USPS dataset remained unchanged. Its data size is 40337

(29463 training and 10874 testing). Finally, the gender encoding in Abalone (male/female/infant) was

mapped into {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Table 1 Comparison on various data sets

Data set
Classification Training set

Number of SVs Training time (s)
SVM parameters

accuracy % size δ γ

Classical SVM
Both SVMs

Classical SVM Classical SVM
Both SVMs

Revised SVM Revised SVM Revised SVM

Boston 92.74 ± 0.86
350

167 ± 6 5.8 ± 0.3
150 0.5

Housing 94.42 ± 0.08 143 ± 10 6.7 ± 0.4

Abalone
87.44 ± 1.01

3000
1317 ± 15 378.8 ± 13.1

500 20.0
93.37 ± 1.24 1277 ± 11 462.3 ± 24.3

USPS
91.1 ± 0.64

29463
11533 ± 5 8221.9 ± 147.8

700 5.0
96.5 ± 0.31 9874 ± 5 9186.3 ± 276.4

Table 1 illustrates testing error rate, training set size and number of support vectors for classical

SVM and the revised SVM algorithms. Here we can see that in almost every data set, the new revised

SVM can gain lower testing error rate than classical SVM.

Using the new method introduced in Section 4.2, little time is needed to compute geodesic distance

from testing sample to training samples and its influence can be neglected. Here, we concentrate on the

difference of training time between the revised SVM and classical SVM. It can also be seen that geodesic

distance leads to a slightly increase of about 16.43 percent in training time. One should determine the

trade-off between reducing the training time and increasing classification accuracy. When high accuracy

is required, one should consider the revised SVM firstly. Otherwise classical SVM or even some linear

classifiers should be employed when less training time is more important. Fortunately, in most cases,

the revised SVM can be used in the same situation as classical SVM, where a relative long training
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time is accepted. Once the training process is completed, the proposed one can be used in online

classification problem to gain high accuracy.

6 Conclusions

High dimensional data sets, for example human face expression data set, are usually on some sort of

manifolds. Application of the geodesic distance to these data sets produces much better results. This

algorithm is most efficient on these data sets because it accurately reflects their intrinsic similarity.

When datasets distribute irregularly in low dimensional space, the classification accuracy of revised

SVM algorithm is still comparable to that of classical SVM algorithm.

We successfully demonstrate the generation of new SVM-kernel by substituting distance-measures

in distance-based kernels. We define modifications of geodesic distance, which reflects the intrinsic

distance on a manifold relative to Euclidean distance. We present a new algorithm for support vector

machines based on geodesic distance. The applications to a difficult two-spiral classification problem

and real data sets problem show that excellent generalization performance can be obtained using

geometric distance based support vector machine.
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