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Abstract An improved pulse width modulation (PWM) neural network VLSI circuit for fault
diagnosis is presented, which differs from the software-based fault diagnosis approach and exploits
the merits of neural network VLSI circuit. A simple synapse multiplier is introduced, which has high
precision, large linear range and less switching noise effects. A voltage-mode sigmoid circuit with
adjustable gain is introduced for realization of different neuron activation functions. A voltage-pulse
conversion circuit required for PWM is also introduced, which has high conversion precision and
linearity. These 3 circuits are used to design a PWM VLSI neural network circuit to solve noise fault
diagnosis for a main bearing. It can classify the fault samples directly. After signal processing, feature
extraction and neural network computation for the analog noise signals including fault information,
each output capacitor voltage value of VLSI circuit can be obtained, which represents Euclid distance
between the corresponding fault signal template and the diagnosing signal, The real-time online
recognition of noise fault signal can also be realized.
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1 Introduction

Differing from the traditional software-based and vibration-based approach for fault diagnosis,

and exploitting the merits (high speed, parallel, etc.) of neural network VLSI circuit, a hardware-based

and noise-based analog neural network VLSI pulse stream technique for mechanism fault diagnosis is

presented.

In [1], the author presented an improved pulse width modulation (PWM) neural network VLSI

circuit. A simple synapse multiplier was designed, which has high precision, large linear range and less

switching noise effects. A voltage-mode sigmoid circuit with adjustable gain was designed for realization

of different neuron activation functions. A voltage-pulse conversion circuit required for PWM was also

suggested, which has high conversion precision and linearity. In [2], a design idea of fault diagnosis

system based on PFM (pulse frequency modulation) was proposed.

This paper describes the PWM VLSI neural network circuit consisting of the three circuits in [1,3]

to diagnose gap abrasion fault of a main bearing. After signal processing, feature extraction and neural

network computation for the analog noise signals including the fault information, each output capacitor

voltage value of the PWM VLSI circuit, which represents Euclid distance between the corresponding

fault signal template and the diagnosing signal, can be obtained, then the fault can be recognized.

Firstly, a new FET (field effect transistor) synapse multiplier/adder based on analog pulse stream

is used to realize the operation of neural network. Moreover, because of adopting the algorithm of

shortest-distance classifier based on single-level perceptron network, the synapse weight values need

not to learn. Certainly, for some complex fault diagnosis including a lot of mechanical equipment and

fault types, multi-level neural network (BP, Kohonen) should be used. Secondly, fault diagnosis and

condition monitoring on most parts of diesel (including piston, valve, etc.) are often based on vibration

signals because vibration sensor is easy to approach those parts and sensitive to their abrasion. However,

a main bearing locates in the interior of diesel, it would result in a lot of troubles of disassembling a

diesel engine to install vibration sensors near the main bearing.

As in [2], noise measurement of diesel is used to realize the monitoring and fault diagnosis of

the gap abrasion of the main bearing. The operation of the reciprocating diesel is a non-stationary

shock vibration, and its energy has a wide distribution in the frequency domain. From the ordinary
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spectrum, it is very difficult to find fault signatures like those of rotating machinery. In our software-

based approach of fault analysis, the extraction of fault signature based on noise signal and wavelet

envelope spectrum was applied to the condition monitoring of gap abrasion of the main bearing, as

in [2], and the result showed that it was very simple and effective and could make the best use of the

conditions information.

2 Experiment conditions

In order to realize the hardware-based online monitoring of the gap abrasion conditions of the

main bearing, the testing equipment is specially set up as shown in Fig. 1. This testing engine is

connected with a waterpower loadometer with adjustable output power. A ND2 acoustic detector is

used to sample the noise signals of the diesel. The capacitor microphone of acoustic detector should

be located on the same horizontal level with the main bearing of diesel, so its distance to the diesel is

0.8m, and its height to the ground is 0.75m. The noise of diesel is usually emitted up and down along

the vibration direction, and relatively stronger in some directions and weaker in other directions. So

the first step is to scan the surface of diesel for a best measurement position where the radiation effect

of sound energy is best, as in [2].

Fig. 1 Sketch map of testing equipment

In order to obtain measurement results exactly, it is necessary to simulate five conditions of gap

abrasion of the main bearing (0.12mm, 0.20mm, 0.22mm, 0.26mm, 0.30mm). The limit value of gap

abrasion of the testing main bearing is 0.25mm, so the above five testing gap conditions include basically

all work conditions from normal gap to serious gap abrasion. In addition, rotating speed: 1200r/min,

output power: 80%, sample rate: 10.8KHz, sample length: 8192 points.

The noise signals of the diesel can be transformed into time-frequency domain through orthogonal

wavelet. Appropriate frequency band is selected and its envelope spectrum is made by Hilbert trans-

form. Through signal analysis, it is found that the amplitude values of 0.5× rotating speed frequency,

1.5 × rotating speed frequency, 2 × rotating speed frequency and cepstrum 100ms are very sensitive

to the gap abrasion conditions of the main bearing, as in [2]. Finally, the four signature values are

imported into the analog neural network circuit through D/A and PWM encoding. In addition, a DSP

unit (Digital Signal Processor) is used to process signal analysis, and compute the above four signature

values (including wavelet analysis, cepstrum analysis, etc.). Through D/A, the analog voltage forms

of the above four signature values are imported into VLSI pulse stream circuit to perform condition

recognition. In Fig. 1, all hardware units (A/D, D/A, DSP, PFM and VLSI neural network circuit)

locate in a VLSI and DSP CHIP unit.

3 Designs for pwm neural net unit circuit

As in [1], artificial neural network (ANN) has many wide applications in pattern recognition, fault

diagnosis, image processing, etc., however, lacking of effective hardware circuit is still obstructive to

its farther development. [3] proposed a digital-analogue merged pulse stream circuit that controls the

operation of multiplier by digital signal, and has the merit of small area multiplier as well as anti-

jamming capability of digital signal that represents the neuron state. But this approach would have

more switching noise effects on the section of analogue circuit. Among many present approaches of pulse
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modulation, PWM has come to many researchers’ attention due to its facile circuit realization, as in

[3∼7]. [3] also proposed another triple-tube multiplier that has simple structure and can realize PWM

VLSI ANN synapse circuit; nevertheless it still has low precision, small linear range and low linearity.

[4] used a simple structure, low gain double-tube amplifier to realize the nonlinear transform, but its

transform function still has a large difference with ideal sigmoid function. Based on the above problems,

[1,7,8] designed a simple synapse multiplier which has a high precision and large linear range, and a

voltage-mode sigmoid circuit with adjustable gain according to a standard CMOS process, respectively.

In addition, a voltage-pulse conversion circuit required for PWM was also suggested as below.

3.1 Single-level perceptron neural network

In this experiment, it only includes five

types of fault conditions, so the simplest decision-

making unit based on single-level perceptron (in-

put vector, synapse weights, perceptrons/output

vector) is used. It can obtain the Euclid distance

between standard fault and input testing vector

through hardware-based neural network opera-

tion, and then can classify each input pattern.

The form of single-level perceptron is as below.

VK = fh(
∑

j

TkjVj) (1) Fig. 2 Single level perceptron network

where V j is the jth element of input vector; VK is the kth element of output perceptrons/output vector;

Tkj is the synapse weight value between V j and VK ; fh is a non-linear function.

Each synapse weight vector is initialized directly by corresponding standard fault signature vec-

tor. The output perceptron VK represents one fault type, and the input vector V j represents one

testing vector to be diagnosed. Through the operation of neural network, each VK can give an output

value representing the Euclid distance value between the current input testing vector V j and the cor-

responding synapse weight vector T kj . Through finding the minimum Euclid distance value, the class

of current fault can be obtained. (Certainly, for complex and large-scale fault recognition, multi-level

BP neural network should be recommended)

3.2 Synapse multiplier

The basic principle of PWM synapse multi-

plier is: the analogue signal that represents input

neuron state is modulated as pulse signal, and

the pulse width is proportional to the analogue

signal; Then, the pulse controls an electric cur-

rent for the integral of a capacitor, the voltage

of which is proportional to the product of input

state signal and weight value. The scheme of the

PWM synapse multiplier is shown as Fig. 3. The

left frame is the synapse multiplier unit, and the

right one is the integral-adding unit. For the aim

of simplification, Fig. 3 only draws one unit of the

synapse multiplier. Actually, there are many out-

put electric currents of synapse multiplier units to

finish the adding function through the same inte-

gral adding unit. In Fig. 3, transistor M1 and M2

consist of a voltage-electric current transform cir-
Fig. 3 PWM synapse multiplier circuit

cuit. Suppose VTP and VTN are the threshold voltage of M1 and M2, respectively, k1 and k2 are the

conductance factors of M1 and M2, respectively; if VREF +VTP 6 VW 6 VREF +VTN , k1 = k2, VTN =

−VTP , VCC = 2VREF , then IB, the difference of electric current between M1 and M2, is linear with

VW − 1/2VCC

IB = −2k1(VCC − 2VTN )(VW −
1

2
VCC) (2)



198 ACTA AUTOMATICA SINICA Vol. 31

PX , the pulse signal representing input neuron state, controls the on/off state of integral electric current

IB through switch transistor M3. The function of M4 is to make V1 equal to VREF so as to ensure the

steady work conditions of M1 and M2 when M3 is on or off, and improve the output precision. The

work process of synapse multiplier unit is as follows firstly. Pulse signal RST makes the output integral

voltage VOUT reset to VREF through the on-control of M8; then, electric current IB starts to charge

capacitor C1, and the charge time length is equal to the pulse width (TWIDTH) of PX . Consequently,

the final result is as below.

Vout −
1

2
VCC =

1

C1

∫ TWIDT H

0

−IBdt =
2k1TWIDTH

C1
(VCC − 2VTN )(Vw −

1

2
VCC) (3)

Namely, the variation of VOUT is linear with the multiplicative value of (VW − 1/2VCC) and TWIDTH ,

and thereby finishing the multiplicative operation of neural network indirectly. In order to minish the

disturbance effect from PX and RST , two extra MOS transistors (M5, M9) are placed into the above

circuit, and the width/length ratio of M5(M9) is just 1/2 of that of M3(M8). The above circuit design

can eliminate the switching noise effect on the operational amplifier.

3.3 Sigmoid transform circuit

The implementation includes the electric current-model and voltage-model, as in [1,7,8]. There

are different requirements for sigmoid function gain in different applications, so a voltage-mode sigmoid

Fig. 4 Voltage-mode sigmoid circuit

with adjustable gain

circuit with adjustable gain is designed for re-

alization of different neuron activation func-

tions. In Fig. 4, VIN is input voltage, VREF

is reference voltage, VCTRL is control vol-

tage to adjust gain, and VOUT is output volt-

age.

M1 and M2 controlled by VREF and VIN

comprise an input differential-couple operat-

ing under saturation condition, and the dif-

ference of electric currents between M1 and

M2 is as below.

I1 − I2 =
1

2
=

1

2
β1(VREF − VIN )

√

4Ib1

β
− (VREF − VIN )2

(4)
In (4), β1 is a constant, M3 and M4 are the resistances of M1 and M2, respectively. If resistance

value is RM , then the voltage difference between two input ports of the second-stage input differential-

couple is as below.

V2 − V1 = (I1 − I2)RM =
1

2
β1RM (VREF − VIN)

√

4Ib1

β1
− (VREF − VIN)2 (5)

M8 is an ever-through resistance. The resistance value of M7 is controlled by VCTRL, which

adjusts the intensity of feedback of differential-couple to change the gain of circuit. If under the

extreme condition that the resistance values of M7 and M8 are all zero, then the difference of electric

currents between M11 and M12 under the saturation condition is as below.

I3 − I4 =
1

2
β2(V2 − V1)

√

4(Ib2 + Ib3)

β2
− (V2 − V1)2 (6)

In (6), β2 is a constant, if |VREF − VIN << min
{√

4Ib1
β1

, 2
RM

√

Ib2 + Ib3
Ib1β1β2

}

, then

I3 − I4 =
1

3
β1β2RM (VREF − VIN)

√

4Ib1

β1
− (VREF − VIN)2

√

Ib2 + Ib3

β2
(7)
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VOUT , the output voltage activized when electric currents (I3 and I4) pass through a series of

current-mirrors, can be defined approximately as below.

VOUT = 2.5 + K(I3 − I4) (8)

In (8), K is a constant, so the final form of VOUT can be denoted as

VOUT = 2.5 +
1

2
kβ1β2RM (VREF − VIN )

√

4Ib1

β1
− (VREF − VIN )2

√

Ib2 + Ib3

β2
(9)

And it can approximate to a sigmoid function:

VOUT =
5

1 + e−C(VIN−2.5)
C is a constant (10)

3.4 Voltage-pulse conversion circuit

Comparing with those conventional digital-based or analogue-based neural network circuits, the

pulsed signals can simplify the operation circuits (e.g., synapse circuit) and improve the inter-linkage

density among neurons effectively. The pulsed signals can also simplify the interfaces between neural

network chips and other peripherals (e.g., computers, digital circuit, etc). Due to the good anti-

jamming performance, it can make the communications inside one neural network chip and among

neural network chips more reliable. However, as concerning a large-scale fault recognition, because

of the limited recognition ability of a single neural network chip, multi chips need to run parallel

with each other. Just as it is, pulse stream technique can represent its superiority of supporting the

communication among chips, as in [3].
Because of the pulse transmission form of

neuron state information, the input voltage sig-

nals and the output voltage signals of sigmoid ac-

tivation function transform should be transformed

into pulse signals. In Fig. 5, a voltage-pulse con-

version circuit required for PWM is presented,

which has high conversion precision and linear-

ity. VV is input voltage, VP is output pulse sig-

nal, CTRL is control signal. When CTRL is at high

level, M5 is on, and M6 is off, as a result, the volt-

age (V1) of capacitor C1 keeps 0 V, and VP is at

low level. When CTRL is from high level to low

level, and V1 < VV , the output of the comparator

composed of M11 ∼ M15 is reversed, and VP is
Fig. 5 Voltage-pulse conversion circuit

from low level to high level. And then, because M5 is off and M6 is on, IB begins to charge the capacitor

C1 with constant current, accordingly, V1 also begins to increase linearly form 0 V. Once V1 exceeds

VV , the output of the comparator is reversed again, and VP changes into low level. Consequently, the

pulse width of VP (output signal) can be defined as below.

TWIDTH = C1
VV

IB

(11)

Namely, the pulse width of output signal is just linear with the input voltage.

4 Noise recognition test based on PWM VLSI neural networks

In our simulation test, single-level perceptron network is used to implement fault recognition.

There are five faults of gap abrasion, and each can be diagnosed through 4 signature parameters as

shown in Section 2. Therefore, the chip should include 5 neurons and 20 synapses. This method includes

two aspects. The first is to extract fault signature vectors from noise signals instead of vibration signals,

and the second is to use pulse stream (PWM), FET synapse multiplier and single-level perceptron

network to implement fault recognition.

The input data of VLSI chip is a 4-dimensional (4-D) signature vector. A model for recognizing five

conditions of gap abrasion of 2100-diesel (0.12mm, 0.20mm, 0.22mm, 0.26mm, 0.30mm, from normal
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gap to serious abrasion) is designed. Each standard fault template vector UK (K=1∼5) represents

four amplitude values of 0.5×speed frequency, 1.5×speed frequency, 2×speed frequency and cepstrum

100ms,and directly stored in the memory of the chip. The sampled noise signal is imported into VLSI

circuit through amplifier and A/D. DSP processor makes a five-level symlets 4 wavelet decomposition

for each group of 8192 points of noise signal, and extracts its envelope of high frequency band; finally,

it performs a spectrum analysis of the envelope and obtains the above four signature values. Each

4-D signature template vector of 8192 points is saved in memory consecutively. Consequently, the

sequences of all standard fault template vectors of the five conditions of gap abrasion can be obtained.

If the length of noise signal is W points, then W/8192 template vectors UK will be saved for each fault

condition. In this simulation test, the W is 81920. In our previous software based research, as in [2],

it is proved that all the above four signature values increase along with the increment of gap abrasion.

In fact, the chip includes a shortest-distance classifier based on pulse stream and neural network

to obtain the Euclid distance between the input testing vector and each fault template vector. In this

test, there are 5 perceptrons on a chip, so it can classify 5 fault types. However, if two chips are used

to recognize faults, then each standard fault template can have two versions for a higher precision. In

order to obtain the highest precision, it is also necessary to mark the noise signal sample. The angle

range is from −360◦ to 360◦ during a work cycle of the diesel. During the course of experiment, record

each maximum pressure value while breaking off oils and regard it as 0◦. Through the above steps,

it can be assured that the length of noise signal is integral multiple of a work cycle of the diesel. In

addition, the work condition of extracting fault templates should be consistent with that of recognizing

faults in the future.

During the process of real-time fault recognition, DSP will output a new 4-D vector x to be

diagnosed after A/D samples a group of 8192 points, then the four signature values of vector x also

need to be transformed into analog voltage form, and encoded using PWM to produce the input state

vector vj . Correspondingly, every 4-D fault template vector uk stored in memory is read sequentially,

and transformed into analog voltage through D/A. Therefore, as soon as finishing the transform from

x to vj , the analog voltage form of each vector uk is imported into the corresponding position, as

synapse weight vector Tkj of this frame (one frame is 8192 points). In our test, W = 81920, so the

system needs to loop the above steps for 10 frames to compute the Euclid distance values between x

and 5 uk vectors respectively (k = 1 ∼ 5, five fault conditions).

‖ x − uk ‖2=‖ x ‖2 −2u
T
k x+ ‖ uk ‖2 (12)

The first item of the above equation is the same to all ‘k’, so it can be neglected. Then, the equation

is as below:

GK(x) = −2(uT
k −

1

2
u

2
k) = −2(wT

k x + Wk0
) (13)

In (13), GK(x) is a linear function, wk = uk, wk0
= −1/2u

2
k.

If set wk = {Tkj} which is the synapse weight vector, and x = {Vj}, then

g(GK(x) =

j=4
∑

j=1

TkjVj + Wk0
(14)

gGK can compute the distance between x and each uk, This can just realize the shortest-distance

classifier. Due to the negative symbol of (13), the Kth
uk, which makes gGK in (14) have the greatest

output, is just nearest to x. During the period of each frame, according to equation (14), all Eu-

clid distance values between x and five fault templates are computed, and the results in five output

capacitors (output neurons) on VLSI chip are stored. In fact, storing the results through capacitors

means that the results from sequential frames can be accumulated. Finally, “the most active” output

neuron having the highest output voltage after sampling 81920 points is found. Each corresponding

fault type that each output neuron represents has been marked in advance, so fault which happened

can be recognized right away now.

In our simulation test, a threshold value must be also defined. If Dm(m = 1 ∼ 5) are the five

Euclid distance values, and Dmin = min{Dm}, then the difference between the five Dm values and
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Dmin is: Cm = |Dm − Dmin|. In terms of testing experience, the threshold value (Vd) is defined as 0.2.

If there is only one Cm < Vd, then the fault is just the type that the m-th output neuron represents;

otherwise, if there are more than one Cm < Vd, then the fault reason can not be judged.

Table 1 is part of the simulation results (using level 47 transistor models for a standard 1.2 µm

CMOS process). In Table 1, D1 ∼ D5 are the Euclid distance values between one testing vector x and

five standard fault template vectors uk; s1 ∼ s4 are 4 testing vectors x; R represents the recognition

results, and Gap1∼Gap5 represent the diagnostic results of gap conditions.

Table 1 Euclid distance between standard fault templates and testing samples

D1 D2 D3 D4 D5 R

s1 −1.17 −0.69 1.05 2.11 3.98 Gap1

s2 −1.53 −2.60 −1.67 0.09 1.31 Gap2

s3 −1.31 −2.58 −4.21 −3.93 −2.12 Gap3

s4 0.79 −2.71 −3.01 −4.11 −2.85 Gap4

s5 1.27 −3.22 −4.01 −4.17 −4.58 Gap5

In our 25 testing samples (s1 ∼ s25), there were only 2 samples that could not be recognised after

the validation of threshold value. So the precision of recognition can reach 80% or so.

5 Conclusions

Comparing with other circuits based on analog, digital or analog/digital, the neural network

VLSI circuit using pulse stream technique can lessen the complexity of VLSI and noise disturbance,

increase the density of neurons and make chip communicate with other digital circuits or PCs more

easily. Through this simulation, it is proved that its performance is near to that of the software-based

fault diagnosis system. In addition, for some complex and large-scale fault monitoring, the multi-

level perceptrons BP neural network VLSI circuit and its dynamic learning of weight values should be

considered, as in [3∼6], because it has a better performance than the shortest-distance classifier based

on single-level perceptron network, even though the shortest-distance classifier does not need to train

synapse weight values.

For other aspects of VLSI pulse stream technique, such as switch capacitor circuit, dynamic storing

of weight values and improvement of anti-jamming performance of circuit, please refer to other relevant

books.
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