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The Lifting Technique for Sampled-data Systems: Useful or Useless?1)
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Abstract The lifting technique is now a well recognized tool for H∞ design and analysis of sampled-
data systems. However, the efficiency of the method depends on the structure of the problem. The
structure of the H∞ sensitivity problem is analyzed in this paper. And the constraints on the
H∞-optimization problem and on the design parameters in lifting design are also discussed. Under
such constraints the resulting performance from the design is generally low. Therefore, the lifting
technique can not be recommended as a synthesis tool for the sampled-data systems. An example is
also given in the paper.
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1 Introduction

Bcause the intersample behavior can be considered, the lifting technique now becomes the first

option for the H∞ design of sampled-data systems. However, the general methodology for H∞ opti-

mization design can not be used as usual in lifting design, and the result is generally poor. Since the

system sensitivity is usually an indispensable part of the H∞ design, the H∞ sensitivity problem is

used in this note as a typical example to demonstrate the troubles with the lifting design.

2 The lifting technique

The lifting can be viewed as breaking up the continuous-time signal f(t) into an infinite number

of consecutive pieces f̂k(t)[1].

f̂k(t) = f(τk + t), 0 6 t 6 τ (1)

The sequence {f̂k} is a discrete-time signal which, for each time k, is a function in L2[0, τ ].

Let w(t) be the input to the system, and {ŵk} its lifting. The state equation under the input

{ŵk} is

x(kτ + t) = eAtx(kτ ) +

∫ t

0

eA(t−s)B1ŵk(s)ds, 0 6 t 6 τ (2)

Let xk := x(kτ ); then (2) can be rewritten in the operator form as[1]

xk+1 = eAτxk + Φbŵk (3)

where Φb is an operator, Φb : L2[0, τ ] → R
x, where x stands for the dimension of the signal x.

With similar computations, the state space realization of the lifted system Ĝ can be obtained in

the operator form[1]. The next step in the lifting design is to transform Ĝ to an equivalent discrete-time

plant

Gd =







Ad B1d B2d

C1d 0 D12d

C2 0 0






(4)

3 The weighted sensitivity design

Fig. 1 shows the weighted sensitivity problem in H∞ design, where W1 is the weighting function,

P is the plant, K is the sampled-data controller, and F is the antialiasing filter.
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Fig. 1 The weighted sensitivity problem

The general H∞ optimization design is to design a system such that the minimum of the weighted

sensitivity is the nominal value, say 1. In other words, the objective of the design is to solve the

following optimization problem

min
K

‖Tzw‖∞ = min
K

‖W1S‖∞ 6 1 (5)

where W1 is a high-gain low-pass filter.

In the standard H∞ problem, Tzw is represented by the linear fractional transformation (LFT)

Fl(G, K) as

Tzw = Fl(G, K) = G11 − G12(I + KG22)
−1KG21 (6)

In the sensitivity problem of Fig. 1, the LFT (6) is written as

Tzw = W1(s) − W1(s)T (s) (7)

where T (s) is the closed-loop transfer function of the system.

If the system is continuous-time, Tzw can further be reduced as follows.

Tzw = W1(s)[I − T (s)] = W1(s)S(s) (8)

It means that this Tzw is really the weighted sensitivity of this system.

But for the sampled-data system, the lifted input {ŵk} acts on the two different parts of (7):

W1(s) and T (s) (through the antialiasing filter). Because the two parts are different from each other

by lifting, (7) can no longer be reduced to a weighted sensitivity by using a common factor W1 as in

(8).

Because the lifted signal {ŵk} acts on two parts of (7), it directly affects the input matrix B1d

of (4). The entries of B1d are related to the bandwidth of the corresponding part. If its bandwidth

is wide, the integral in (2) will increase quickly, and the corresponding entries of B1d become large.

As for (7), the first part W1 is of narrow bandwidth, the corresponding entries of B1d are small, but

for the second part, the corresponding entries increase significantly. Thus, the second part will play

a dominant role, and the lifted Tzw shows like a weighted closed-loop transfer function W1T , and has

nothing to do with the sensitivity S(jω). Therefore, in lifting design W1(s) must not be a low-pass

function as usual, hence the optimization problem (5) can no longer be used in consequence.

The following is an alternative optimization problem which can be used in lifting design.

min ‖W1S‖∞ (9)

where W1 is an ideal filter with wide bandwidth ω0:

{

|W1(jω)| = 1, ω 6 ω0

|W1(jω)| = 0, ω > ω0

(10)

The solution of (9) is a wide range of minimum |S(jω)| over 0 ∼ ω0.
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The bandwidth ω0 of W1 should be large, otherwise, the lifted Tzw can not reflect the sensitivity

S(jω) as mentioned above. It can be shown (by the following example) that when ω0 is up to ωN/5,

the lifted Tzw can present the property of a weighted sensitivity. Notice that the highest frequency in

a sampled-data system is the Nyquist frequency ωN (i.e., ωs/2). Now because the bandwidth of W1 is

ω0 = ωN/5, the crossover frequency ωc must lie between 0.2ωN ∼ ωN . That is to say, the ln|S(jω)|

curve must intersect the 0 dB line in so narrow an interval. According to the Bode integrals[2,3], the

negative area of ln|S(jω)| is equal to the positive area on the frequency band 0 ∼ ωN . Since ωc must

be large, the optimal performance Smin thus obtained is limited. It can not be as small as expected,

e.g., in reference [4] the optimal Smin was about 0.2∼0.6.

4 Design example

Suppose that the plant, the weighting and the filter in Fig. 1 are as follows.

P (s) =
20 − s

(s + 1)(s + 20)
, W1(s) =

(

0.4π

s + 0.4π

)2

, F (s) =
2π

s + 2π

Let the sampling period τ = 0.5sec. According to the standard lifting approach[4], the equivalent

discrete-time plant Gd [equation(4)] can be obtained as

Gd =



































0 0 0 0 0 0 0 0 1.9999

0.0319 0.6065 0 0 0 0 0 0 0.3296

0.0344 0.6736 0.0432 0.0138 0.0285 1.7683 −0.0032 0.0033 0.2187

0.0171 0.3611 0 0.5470 0.0299 0.6000 0.3041 −0.0142 0.0752

0.0048 0.1114 0 0.3411 0.5470 0.1000 0.1779 0.0265 0.0120

0.0010 0.0271 0 0.1386 0.5439 0 0 0 0.0015

0.0011 0.0269 0 0.0873 −0.0240 0 0 0 0.0022

0 0 0 0 0 0 0 0 0

0 0 1.0000 0 0 0 0 0 0



































(11)

The optimization problem (9) is then solved by using the MATLAB function dhfsyn. The resulting

optimal H∞ norm is γmin = min ‖Tzw‖∞ = 0.6451. And the corresponding H∞ controller is

K(z) =
−3.7187(z − 0.6065)(z − 0.2708)(z − 0.04321)(z − 4.54e−0.05)

(z + 0.6552)(z + 0.008101)(z2 − 0.7998z + 0.2372)
(12)

Fig. 2 shows the hybrid simulation of the step response from w. The static error is 0.4168. It is

rather large, and it is the actual minimum of the sensitivity, Smin. This is because W1 is an approximate

ideal-filter, and the norm of W1S is equal to the value of S(jω) at ω = 0. Therefore, the steady

state value of the above mentioned step response is really the Smin. Notice that the solution of the

H∞ optimization problem for the lifted system is γmin = 0.6451. Hence, the lifting design is also

conservative.

5 Conclusion

In the H∞ sensitivity problem, the lifting technique can only be used with the optimization

problem (9), and the bandwidth of the weighting function W1 can only be chosen as ω0 = ωN/5, so

the bandwidth of the system is close to the Nyquist frequency ωN with no other choices. Furthermore,

according to the Bode integrals, the optimal performance obtained is quite limited. Furthermore, the

resulting norm γ from the lifting design is also conservative.

Because the bandwidth of the lifting design is close to ωN = ωs/2, the magnitudes of the dominant

poles are near ωs/2. This means that the time response may be a damped oscillation with frequency

of ωs/2 (see Fig. 2), and it is also not required.
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Fig. 2 Step response z1 of the system
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