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Delay-dependent Conditions for Absolute Stability of Lurie Control
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Abstract Some delay-dependent absolute stability criteria for Lurie control systems with time-

varying delay are derived, in which some free-weighting matrices are used to express the relation-

ships between the terms in the Leibniz-Newton formula. These criteria are based on linear matrix

inequality(LMI) such that the upper bound of time-delay guaranteeing the absolute stability and the

free-weighting matrices can be obtained through the solutions of the LMI. Moreover, the Lyapunov

functional constructed by the solutions of these LMIs is adopted to guarantee the absolute stability

of the systems. Finally, some examples are provided to demonstrate the effectiveness of the proposed

methods.
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1 Introduction

The problem of the absolute stability of Lurie control systems with delay has been widely studied

for several decades[1∼8]. Some delay-independent absolute stability criteria were derived in [1∼4],

while the delay-dependent ones were obtained in [5∼8]. Since the delay-dependent criteria make use

of information on the length of delays, they are less conservative than delay-independent ones. The

delay-dependent absolute stability conditions in [5∼7] were formulated in terms of matrix measure and

matrix norm. Although they are easy to check, they require the matrix measure to be negative such

that they are only adapted to the systems with small sectors. On the other hand, they are only some

existing conditions which, instead of being solvable, depend on the selection of some free parameters

in the Lyapunov functional. Park′s inequality in [9] was extended to delay-dependent conditions for

Lurie systems with delay in [8]. However, there is room for improvement in the handling of the delay

term[10]. The free-weighting matrices approach presented in [10], which took the relationship between

the terms in the Leibniz-Newton formula into account, is one of the most effective methods handling

the delay-dependent stability problem.

In this paper, the free-weighting matrices approach[10] is employed to derive the delay-dependent

absolute stability criteria for Lurie systems with time-varying delay. The relationship between the

terms in the Leibniz-Newton formula is described by some free-weighting matrices such that the upper

bound of delay guaranteeing that the system is absolutely stable can be derived through the solutions of

linear matrix inequality(LMI). On the other hand, the delay-dependent conditions are adapted to both

infinite sector and finite sector. Finally, some examples are employed to demonstrate the effectiveness

and the improvement over some existing papers.

2 Main results

Consider a Lurie control system with time-delay











ẋ(t) = Ax(t) + Bx(t − d(t)) + Df (σ)

σ = CTx(t)

x(t) = ϕ(t), t ∈ [−τ, 0]

(1)

where x(t) ∈ Rn is state vector, σ = (σ1, σ2, · · · , σm)T, f (σ) = (f1(σ1), f2(σ2), · · · , fm(σm))T, A, B ∈
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Rn×n, C, D ∈ Rn×m. The time delay, d(t) is a time-varying continuous function that satisfies

0 6 d(t) 6 τ, ḋ 6 µ 6 1 (2)

Every non-linearity part satisfies the infinite sector condition

fj(·) ∈ Kj [0,∞] = {fj(σj)|fj(0) = 0, σjfj(σj) > 0(σj 6= 0)}, j = 1, 2, · · · , m (3)

or the finite sector condition

fj(·) ∈ Kj [0, kj ] = {fj(σj)|fj(0) = 0, 0 < σjfj(σj) 6 kjσ
2
j (σj 6= 0)}, j = 1, 2, · · · , m (4)

Definition 1. System (1) is absolutely stable for any fj(·) (j = 1, 2, · · · , m) satisfying (3)(or (4)),

if system (1) is globally asymptotically stable for any functions in (3)(or (4)).

First, consider the absolute stability for system (1) in the infinite sector (3). Choose the Lyapunov

functional candidate as

V (xt) = x
T(t)Px(t)+ 2

m
∑

j=1

λj

∫ σj

0

fj(σj)dσj +

∫ t

t−d(t)

x
T(s)Qx(s)ds+

∫ 0

−τ

∫ t

t+θ

ẋ
T(s)Zẋ(s)dsdθ (5)

where P > 0, Q > 0, Z > 0, Λ = diag(λ1, λ2, · · · , λm) > 0 are to be determined. Calculating the

derivative of V (xt) along the solutions of system (1) yields

dV (xt)

dt
62[xT(t)P + f

T(σ)ΛC
T] · [Ax(t) + Bx(t − d(t)) + Df (σ)]+

x
T(t)Qx(t) − (1 − µ)xT(t − d(t))Qx(t − d(t)) −

∫ t

t−d(t)

ẋ
T(s)Zẋ(s)ds+ (6)

τ [Ax(t) + Bx(t − d(t)) + Df (σ)]TZ[Ax(t) + Bx(t − d(t)) + Df (σ)]

Using the Leibniz-Newton formula, for any matrices N1, N2 ∈ Rn×n, N3 ∈ Rm×n,

2[xT(t)N1 + x
T(t − d(t))N2 + f

T(σ)N3] · [x(t) − x(t − d(t)) −

∫ t

t−d(t)

ẋ(s)ds] = 0 (7)

On the other hand, for any semi-positive definite matrix X =





X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33



 > 0, the following

holds according to (2).

z
T(t)(τX)z(t) −

∫ t

t−d(t)

z
T(x)Xz(t)ds > 0 (8)

where z(t) = [xT(t) xT(t − d(t)) fT(σ)]T. Adding (7) and (8) into (6) yields

dV (xt)

dt
6 z

T(t)Φz(t) −

∫ t

t−d(t)

z
T
1 (t, s)Ψz1(t, s)ds (9)

where z(t) is defined in (8) and z1(t, s) = [zT(t) ẋT(s)]T,

Φ =





Φ11 + τATZA + τX11 Φ12 + τATZB + τX12 Φ13 + τATZD + τX13

Φ
T
12 + τBTZA + τXT

12 Φ22 + τBTZB + τX22 Φ23 + τBTZD + τX23

Φ
T
13 + τDTZA + τXT

13 Φ
T
23 + τDTZB + τXT

23 Φ33 + τDTZD + τX33





Ψ =









X11 X12 X13 N1

XT
12 X22 X23 N2

XT
13 XT

23 X33 N3

NT
1 NT

2 NT
3 Z









Φ11 = PA + A
T
P + Q + N1 + N

T
1 , Φ12 = PB + N

T
2 − N1, Φ13 = PD + A

T
CΛ + N

T
3

Φ22 = −(1 − µ)Q − N2 − N
T
2 , Φ23 = B

T
CΛ − N

T
3 , Φ33 = D

T
CΛ + ΛC

T
D
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In addition, (3) can be expressed as

−fj(σj)cjx(t) 6 0, j = 1, 2, · · · , m (10)

By applying S-procedure[11],
dV (xt)

dt
< 0 for (xT, xT(t− d(t))) 6= 0 and the restriction of the condition

(10) if there exist tj > 0(j = 1, 2, · · · , m) such that

z
T(t)Φz(t) −

∫ t

t−d(t)

z
T
1 (t, s)Ψz1(t, s)ds + 2

m
∑

j=1

tjfj(σj)cjx(t) < 0 (11)

for z(t) 6= 0. If Ψ > 0 and

Φ +





0 0 CT

0 0 0

TCT 0 0



 < 0 (12)

then (11) holds. Specifically, X can be chosen as X =





N1

N2

N3



 Z−1





N1

N2

N3





T

. This ensures X > 0 and

Ψ > 0. In this case, according to Schur complements, (12) is equivalent to













Φ11 Φ12 Φ13 + CT τN1 τATZ

Φ
T
12 Φ22 Φ23 τN2 τBTZ

Φ
T
13 + TCT

Φ
T
23 Φ33 τN3 τDTZ

τNT
1 τNT

2 τNT
3 −τZ 0

τZA τZB τZD 0 −τZ













< 0 (13)

Then, the following Theorems are given.

Theorem 1. For given τ > 0 and µ, system (1) is absolutely stable with the restriction of (3)

if there exist P > 0, Q > 0, Z > 0, T > 0, Λ > 0 and any matrices Ni(i = 1, 2, 3) with appropriate

dimension such that LMI (13) is feasible.

On the other hand, (4) can be expressed as

fj(σj)(fj(σj) − kjcjx(t)) 6 0, j = 1, 2, · · · , m

Similarly, we also have

Theorem 2. For given τ > 0 and µ, system (1) is absolutely stable with the restriction of (4) if

there exist P > 0, Q > 0, Z > 0, Z > 0, T > 0, Λ > 0 and any matrices Ni(i = 1, 2, 3) with appropriate

dimension such that following LMI (15) is feasible.













Φ11 Φ12 Φ13 + CKT τN1 τATZ

Φ
T
12 Φ22 Φ23 τN2 τBTZ

Φ
T
13 + TKCT

Φ
T
23 Φ33 − 2T τN3 τDTZ

τNT
1 τNT

2 τNT
3 −τZ 0

τZA τZB τZD 0 −τZ













< 0

where K = diag(k1, k2, · · · , km), and Φij(i = 1, 2, 3; i 6 j 6 3) are defined in (9).

4 Examples

Example 1. Consider system(1) with

A =

[

−2 0

−1 −2

]

, B =

[

−0.2 −0.5

0.5 −0.2

]

, D =

[

−0.2

−0.3

]

, C =

[

0.6

0.8

]

, f(·) ∈ K[0,∞)

From Theorem 1, system (1) is absolutely stability in the infinite sector restriction (3) for any delay

when µ = 0. The best value for the upper bound of delay given in [5∼8] was 2.055 in [8]. When µ = 0.9,

for any given delay, system (1) with the restriction of (3) is still absolutely stable. In fact, solving LMI

(13) for τ = 100, we have

P =

[

4.7087 −0.2022

−0.2022 3.5361

]

, Q =

[

8.6172 1.6617

1.6617 7.1791

]

, Z =

[

0.0127 −0.0022

−0.0022 0.0088

]
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Λ = [0.6649], T = [1.7421], N1 =

[

0.1721 −0.2381

0.3923 −0.2081

]

× 10−4

N2 =

[

0.1407 −0.0458

0.0126 0.0834

]

× 10−3
, N 3 = [0.2370 − 0.0231] × 10−4

and system (1) with the restriction of (3) is absolutely stable, while [5∼8] could not derive the corre-

sponding results.

Example 2. Consider system (1) with

A =

[

−2 0

−1 −2

]

, B =

[

−0.2 −0.5

0.5 −0.2

]

, D =

[

−0.2

−0.3

]

, C =

[

−0.6

0.8

]

the upper bounds of time-delay, which guantee that system (1) is stable for various µ and K, are listed

in Table 1.

Table 1 Relationship among sector, the upper bound of the derivative of delay and the upper bound of delay

f(·) K[0,∞) K[0, 100] K[0, 10)

µ = 0 1.1263 1.7541 any delay

µ = 0.5 0.8848 1.2282 Any delay

µ = 0.9 0.6781 0.8472 3.0656

5 Conclusion

In this paper, some delay-dependent conditions for Lurie systems with time-varying delay are de-

rived, in which the free-weighting matrices are employed to express the relationship between the terms

in the the Leibniz-Newton formula. The free-weighting matrices and the free parameters constructing

the Lyapunov functional can be obtained by the solutions of LMI. Finally, numerical examples demon-

strate the effectiveness of the methods presented in this paper.
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