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Abstract To solve the problem such as too many models, long computing time and so on, a
hierarchical multiple models direct adaptive decoupling controller is designed. It consists of multiple
levels. In the upper level, the best model is chosen according to the switching index. Then multiple
fixed models are constructed on line to cover the region which the above chosen fixed model lies in.
In the last level, one free-running and one re-initialized adaptive model are added to guarantee the
stability and improve the transient response. By selection of the weighting polynomial matrix, it not
only eliminates the steady output error and places the poles of the closed loop system arbitrarily, but
also decouples the system dynamically. At last, for this multiple models switching system, global
convergence is obtained under common assumptions. Compared with the conventional multiple
models adaptive controller, it reduces the number of the fixed models greatly. If the same number
of the fixed models is used, the system transient response and decoupling result are improved. The
simulation example illustrates the power of the derived controller.
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1 Introduction

It is known that a system with unknown time invariant or slowly time varying parameters can

get good performance by using an adaptive controller. But when the system boundary condition

changes, the subsystem fails, or large external disturbance presents, the parameters of the system will

change abruptly and large parameter errors will generally result in poor transient response[1]. To solve

these problems, multiple models adaptive controller (MMAC) was proposed. For a continuous time

system, Narendra et al. used multiple adaptive models to identify the unknown system parameters

simultaneously[2]. These models were of different initial values and were used to cover the region where

the system parameters changed. At any instant one best model was chosen according to the switching

index and the corresponding controller was designed. However, after some instants multiple adaptive

models would converge to a neighborhood and lose the power when the system parameters changed

abruptly again. Thus, multiple fixed models with two adaptive models were used to overcome this

problem[3]. In [4] the above results were extended to the discrete-time system. But all of these were

dealt with the single input single output (SISO) system and adopted the indirect adaptive algorithm,

which not only needed to solve equations on line but also degraded the robustness of the algorithm[1]. To

solve this problem, multiple models direct adaptive decoupling controller (MMDADC) was proposed[5].

The interactions of the system variables were viewed as measurable disturbance and were eliminated

using a feedforward strategy[6].

In an MMAC, to improve the transient response, a large number of fixed models are needed to

cover the region where the system parameters change. In the simulation example in [7], when only one

parameter changed, hundreds of fixed models must be used. This increased the computation, raised the

system expense, even affected the choice of the sampling period of the discrete-time system. So how to

reduce the number of the models is an important issue in MMAC, which blocks its practical use in the

industrial process[8]. Zhivoglyadov et al. presented a localization method. At each instant, incorrect

models were discarded on line to guarantee the global stability[8]. In [9] a method called Moving Bank

was proposed. It tuned the center of the parameter set dynamically to cover the optimal estimation
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parameter. But all of these methods can only reduce the fixed models partially, and can not decrease

the computation essentially.

In this paper a hierarchical multiple models adaptive decoupling controller (HMMADC), which

adopts the direct adaptive algorithm, is presented. The hierarchical structure is utilized to cover the

region where the parameters change dynamically and reduce the number of the fixed models greatly.

The direct adaptive algorithm allows the controller to be chosen directly according to the switching

index to decrease the computation. By selection of the polynomial matrix, it not only places the poles

of the closed loop system arbitrarily but also decouples the system dynamically. The proof of the

global convergence is obtained. Several simulation examples illustrate the effectiveness of the controller

proposed.

2 Description of the System

The system to be controlled is a linear MIMO discrete-time system, which admits DARMA

representation as

A(t, z−1)y(t) = B(t, z−1)u(t − k) + B2(t, z
−1)v(t − k2) + d(t) (1)

where u(t),v(t),y(t) are n × 1 input, measurable disturbance, output vectors respectively, and d(t) is

an n × 1 vector denoting steady state output response for a zero input signal. k, k2 are time delays

respectively. A(t, z−1), B(t, z−1), B2(t, z
−1) are polynomial matrixes in the unit delay operator z−1

and B0(t) is nonsingular, for any t.

The system satisfies assumptions as follows.

1) System parameters are time variant with infrequent large abrupt jumps. The period between

two adjacent jumps is large enough to keep jumping parameters constant.

2) Φ(t) = [−A1(t), · · · ; B0(t), · · · ; B20(t), · · · ; b(t)] is the system model, which changes in a com-

pact set Σ.

3) The upper bounds of the orders of A(t, z−1), B(t, z−1), B2(t, z
−1) and the time delays k, k2 are

known a prior.

4) The system is minimum-phase.

From assumption 1), Ai(t),Bj(t), B21(t),d(t) are piecewise constants. During the period when

no jumps happen, (1) can be rewritten as follows without loss of generality

A(z−1)y(t) = z
−1

u(t − k) + B2(z
−1)v(t − k2) + d (2)

3 Hierarchical multiple models adaptive controller design

To reduce the number of the fixed models, a novel MMADC using hierarchical structure is pre-

sented. Firstly, the region where the system parameters change is partitioned into several sub-regions.

In each sub-region, one fixed model is designed and all these fixed models construct a multiple model

set. At any instant, one best fixed model in this level is chosen according to the switching index and the

corresponding sub-region is determined too. Then in the next level, partition the chosen sub-region into

several sub-regions online and construct the fixed model set dynamically. Furthermore, in the last level,

the best fixed model can be got. Finally to improve the transient response and guarantee the global

stability, one free-running adaptive model and one re-initialized adaptive model are added. According

to the switching index, the best model can be chosen. To realize the direct adaptive algorithm, all

the above models are adopted such that the best controller can be chosen from these controller models

directly.

3.1 Foundation of fixed system models

Definition 1. Matrix Φ, which is composed of the coefficient matrices of the matrix polynomials

A(z−1), B(z−1), B2(z
−1) and d is called the system model. As t changes, all Φ(t) compose the system

parameter set Σ.

3.1.1 Foundation of the first level fixed system models

Utilizing the prior information, in the first level, Σ is partitioned into m1 subsets Σ1,s, (s =

1, · · · , m1) and each has the following properties

1)
⋃m1

s=1
Σ1,s ⊇ Σ; Σ1,s is not empty, s = 1, · · · , m1
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2) For any Φ ∈ Σ1,s, s = 1, · · · , m1, there exists Φ1,s ∈ Σ1,s and 0 6 r1,s < ∞ satisfying

‖ Φ − Φ1,s ‖6 r1,s. Φ is called the center of subset Σ1,s and r1,s is called its radius. The existence of

r1,s is guaranteed by assumption 2).

From 1) and 2), it is known that in the first level, system parameter set Σ is covered by m1 subsets

Σ1,s and every subset is covered by the center Φ1,s with its neighbor entirely. So centers of all subsets

Φ1,s(s = 1, · · · , m1) are set up as fixed system models in the first level to cover the system parameter

set entirely.

3.1.2 Foundation of the i+1th level fixed system models

According to the switching index, in the ith level, the ji model Φi,ji
is chosen to be the best model

as follows

Φi,ji
= f(p1, p2, · · · , pni

) (3)

where p1, · · · pk, · · · , pni
are system parameters. The foundation of the i + 1th level fixed models is

introduced as follows.

1) For the chosen model Φi,ji
in the ith level, determine the interval where each system parameter

pk changes, i.e., pk ∈ [pk low, pk high], k ∈ [1, ni].

2) Partition the above interval into mi+1 sub-intervals. Then the hth interval of the parameter pk

is as follows.

pk,h = pk low + h ×
pk high − pk low

mi+1
, h = 1, 2 · · · , mi+1 (4)

3) Compose the hth interval of all system parameters into one fixed model named the hth fixed

model Φi+1,h in the i + 1th level, which covers the sub-region Σi+1,h in the i + 1th level with its

neighborhood, i.e., Φi+1,h = f(p1,h, · · · , pk,h, · · · , pni,h), h = 1, 2, · · · , mi+1.

4) Adopt all these mi+1 fixed models Φi+1,1, · · · ,Φi+1,mi+1 to form the fixed model set in the

i + 1th level to cover the sub-region Σi,ji
in the ith level.

Obviously, the subset has the following properties.

1)
⋃mi+1

s=1
Σi+1,s ⊇ Σi,ji

, Σi+1,s is not empty, s = 1, · · · , mi+1;

2) For any Φ ∈ Σi+1,s, s = 1, · · · , mi+1 there exists Φi+1,s ∈ Σi+1,s and ∃0 6 ri+1,s 6 ri,s

satisfying ‖ Φ − Φi+1,s ‖6 ri+1,s. Φi+1,s is called the center of the subset Σi+1,s and ri+1,s is called

its radius. The existence of ri+1,s is guaranteed by assumption 2).

Similarly, the fixed models can be set up until the last level, i.e., the lth level, so the fixed system

models using the hierarchical structure are founded.

3.2 Foundation of fixed controller models

Like the conventional optimal controller design[5], fixed controller models are derived from the

fixed system models. The cost function to be considered is of the form

J c =‖ P (z−1)y(t + k) − R(z−1)w(t) + Q(z−1)u(t) + S(z−1)v(t − k − k2) + r ‖2 (5)

where w(t) is the known reference signal, and P (z−1), Q(z−1), R(z−1), S(z−1) are weighting polynomial

matrixes, respectively. Introduce the identity as follows

P (z−1) = F (z−1)A(z−1) + z
−k

G(z−1) (6)

In order to get unique polynomial matrixes F (z−1), G(z−1), orders of F (z−1), G(z−1) are chosen as

nf = k − 1, ng = na − 1 (7)

Multiplying (2) by F (z−1) from left and using (6), the optimal control law can be derived as follows.

G(z−1)y(t) + H(z−1)u(t) + H2(z
−1)v(t + k − k2) + r̄ = R(z−1)w(t) (8)

where

H(z−1) = F (z−1)B(z−1) + Q(z−1) (9)

H2(z
−1) = F (z−1)B2(z

−1) + S(z−1) (10)

r̄ = F (1)d + r (11)
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Using (8) and (2), the closed loop system equation is as follows.

[P (z−1) + Q(z−1)B−1(z−1)A(z−1)]y(t + k) =

[Q(z−1)B(z−1)−1
B2(z

−1) − S(z−1)]v(t + k − k2) + Q(1)B−1(1)d − r (12)

For a minimum phase system, let

Q(z−1) = R1B(z−1) (13)

where R1 is a constant matrix. To place poles arbitrarily, eliminate the steady state error and the

effect of d exactly, let

P (z−1) + R1A(z−1) = T (z−1) (14)

R(z−1) = T (1) (15)

S(z−1) = R1B2(z
−1) (16)

r = R1d (17)

The polynomial matrix T (z−1) is assumed to be stable and has the form

T (z−1) = I + T1z
−1 + · · · + Tntz

−nt (18)

where Ti is a diagonal matrix which is decided by the designer. Then the closed loop system is derived

as

T (z−1)y(t + k) = T (1)w(t) (19)

By selection of weighting polynomial matrixes, it not only decouples the system dynamically but also

places those poles arbitrarily.

Definition 2. Matrix Θ is composed of the coefficient matrixes of G(z−1), H(z−1), H2(z
−1), r̄

which is derived from system model Φ by using (13)∼(17), (6), (8)∼(11), is called the controller model.

All Θ(t) derived from Φ(t) compose the controller parameter set Ω . The set Ω i,s, which is composed of

the Θ(t) derived from the Φ(t) ∈ Σi,s(s = 1, · · · , mi) in the ith level, is called the controller parameter

subset in the ith level and Θ i,s(s = 1, · · · , mi) derived from Φi,s ∈ Σi,s(s = 1, · · · , mi) is called the

center of subset Ω i,s in the ith level.

3.4 Multiple models directly adaptive controller

Definition 3. Multiple controller models in the ith level are composed of mi fixed controller

models Θ i,s, s = 1, · · · , mi, i = 1, 2, · · · , l. In the last level, i.e., the l + 1th level, multiple controller

models are composed of the best fixed controller model chosen from the lth level named Θ l+1,1, one

free-running adaptive controller model Θ l+1,2 and one re-initialized adaptive controller model Θ l+1,3.

The free-running adaptive controller model Θ l+1,2 is used to guarantee the stability of the system and

the re-initialized adaptive controller model Θ l+1,3 is used to improve the transient response.

For the adaptive model, Θ̂ l+1,2(t) and Θ̂ l+1,3, multiplying (2) by F (z−1) + R1, and utilizing(6),

(13)∼(14), (8)∼(11), (16)∼(17), the recursive estimation algorithm is described as follows

T (z−1)y(t + k) = G(z−1)y(t) + H(z−1)u(t) + H2(z
−1)v(t + k,−k2) + r̄ (20)

θ̂i(t) = θ̂i(t − 1) +
a(t)X(t − k)

1 + X(t − k)TX(t − k)
[yfi(t) − X(t − k)Tθ̂i(t − 1)] (21)

where yfi = tii(z
−1)yi(t) is the auxiliary system output, X(t) = [y(t)T, · · · ; u(t)T, · · · , v(t + k −

k2)
T, · · · , 1]T is the data vector, Θ = [θ1, · · · , θn] is the controller parameter matrix and θi = [g0

i1, · · · , g
0
in;

g1
in, · · · ; h0

i1, · · · , h
0
in; h1

i1, · · · , h
1
in, · · ·]T, i = 1, 2, · · · , n. The scalar a(t) is designed to avoid the singu-

larity problem when estimating Ĥ(0). If Ĥ(0) is singular, let a(t) equal another constant value in the

interval σ < a(t) < 2 − σ, 0 < σ < 1 to estimate Ĥ(0) again[10] .

In the ith level, (i = 1, 2, l + 1), the switching index is as follows

Ji,s =

∥

∥

ef
i, s

(t)
∥

∥

2

1 + X(t − k)TX(t − k)
=

∥

∥yf (t) −
yf
i, s

(t)
∥

∥

2

1 + X(t − k)TX(t − k)
, s = 1, · · · , mi (22)
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where ef
i, s

(t) is the auxiliary output error in the ith level between the real system and the model s.

yf (t) = T (z−1)y(t) = Θ
T
0 X(t− k) is the auxiliary output of the system and Θ0 is the real value of the

system.
y

f
i, s

(t) = T (z−1)yi,s(t) = Θ
T
i,sX(t − k) is the auxiliary output of the model s in the ith level.

In the ith level, let ji = arg min(Ji,s) s = 1, · · · , mi, i = 1, 2, · · · , l, correspond to the model Θji

whose auxiliary output error is minimum; then it is chosen to be the best fixed controller model. In

the last level, i.e., l + 1th level, let jt+1 = arg min(Jl+1,s) s = 1, 2, 3 correspond to the model Θjl+1

whose auxiliary output error is minimum; then it is chosen to be the controller.

1) If jj+1 6= 3, which means Θ̂ l+1,3(t) is not the minimum output error controller, then re-initialize

Θ̂ l+1,3(t) as the optimal controller parameter to improve the transient response, i.e., Θ̂ l+1,3(t) =

Θ l+1,jl+1
, Θ̂ l+1,2(t) are estimated using (21) respectively and the controller is set as Θ̂(t) = Θ l+1,jl+1

.

2) If jl+1 = 3, then Θ̂ l+1,2(t), Θ̂ l+1,3(t) are estimated using (21) respectively and the controller is

set as Θ̂(t) = Θ̂ l+1,3(t).

The optimal control law can be obtained as

Ĝ(z−1)y(t) + Ĥ(z−1)u(t) + Ĥ2(z
−1)v(t + k − k2) + ˆ̄r = R(z−1)w(t) (23)

4 Global convergence analysis

Theorem 1. Subject to assumptions 1)-4), if algorithm (23) is applied to system (2), {y(t)}, {u(t)}

are bounded and limt→∞ ‖ e(t) ‖= 0.

Proof. a) If ef
l + 1, 1

(t) 6= 0, which it means that when the controller with fixed parameters is

adopted, there must exist an error such that the convergence property can not be guaranteed. Let

εi(t) = min
∣

∣

ef
l + 1, 1

(t)
∣

∣.

For the free running adaptive controller 2, the recursive estimation algorithm (21) has the prop-

erty[10]

lim
t→∞

ef
l + 1, 2i

(t)2

1 + X(t − k)TX(t − k)
= 0 (24)

Then there must exist an instant ts, when t > ts

ef
l + 1, 2i

(t)2

1 + X(t − k)TX(t − k)
6

εi(t)
2

1 + X(t − k)TX(t − k)
i = 1, · · · , n (25)

which means that after instant ts, no fixed controller models can be chosen as the controller. The

controller is selected between the free-running adaptive controller model 2 and the re-initialized adaptive

controller model 3. According to the switching index (22), it follows that

0 6
efi(t)

2

1 + X(t − k)TX(t − k)
6

ef
l + 1, 2i

(t)2

1 + X(t − k)TX(t − k)
(26)

So

limt→∞

ei(t)
2

1 + X(t − k)TX(t − k)
= 0, i = 1, · · · , n (27)

Subject to the stability of T (z−1), the minimum phase system and bounded wi(t), vi(t+k−k2), di,

it is obtained that[10]

|ui(t − k)| 6 K1 + K2 max
16τ6t

16j6n

|yj(τ )|, 0 < K1 < ∞, 0 < K2 < ∞, 1 6 t 6 N, i = 1, · · · , n (28)

|yi(t)| 6 K3 + K4 max
16τ6t

16j6n

|efj(τ )|, 0 < K3 < ∞, 0 < K4 < ∞, 1 6 t 6 N, i = 1, · · · , n (29)

|ui(t − k)| 6 K5 + K6 max
16τ6t

16j6n

|efj(τ )|, 0 < K5 < ∞, 0 < K6 < ∞, 1 6 t 6 N, i = 1, · · · , n

(30)

According to lemma 3.1 in [10], it follows that {y(t)}, {u(t)} is bounded and limt→∞ ‖ ef (t) ‖= 0.
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b) If ef
l + 1, 1

(t) = 0, that is, the parameter matrix Θ l+1,1 of the fixed controller equals the real

value of system Θ0 or Θ l+i,1 − Θ0 is orthogonal to the data vector X(t − k). then Jl+1,1 = 0 and Θ

is chosen to be the controller. Then the case reduces to the single model case and switching stops.

Using a similar argument, subject to the stability of T (z−1), the minimum phase system and

bounded wi(t), vi(t + k2), di, it is concluded that[10]

|yi(t)| 6 K7 + K8 max
16τ6t

16j6n

|efj(τ )|, 0 < K7 < ∞, 0 < K8 < ∞, 1 6 t 6 N, i = 1, · · · , n (31)

|ui(t − k)| 6 K9 + K10 max
16τ6t

16j6n

|efj(τ )|, 0 < K9 < ∞, 0 < K10 < ∞, 1 6 t 6 N, i = 1, · · · , n

(32)

Therefore, {y(t)}, {u(t)} are bounded and ‖ ef (t) ‖=
∥

∥

ef
l + 1, 1

(t)
∥

∥ = 0.

Considering the above cases together, it follows that {y(t)}, {u(t)} is bounded and limt→∞

‖ ef (t) ‖= 0.

Considering the ef (t) = T (z−1)e(t) and T (z−1) is stable, it is concluded that[11]

lim
t→∞

‖ e(t) ‖= 0 (33)

Therefore, the theorem holds. �

5 Simulation studies

A linear multivariable system is described as follows

(I + A1z
−1 + A2z

−1)y(t) = (B0 + B1z
−1)u(t − 2) + (B20 + B21z

−1)v(t − 2) + d (34)

where A1 =

[

0.2 0.5

0.5 0.2

]

, A2 =

[

0.03 0.04

0.04 0.03

]

, B0 =

[

1 2

2 10

]

, B1 =

[

0.2 0.3

0.3 0.2

]

, B20 =

[

0.1 0.7

0.5 0.2

]

,

B21 =

[

0.2 0.3

0.5 0.1

]

, d =

[

0.2

0.5

]

. The measurable disturbance is a square wave with magnitude 2 and

the known reference signal w1 is set to be a square wave with magnitude 100, too. All the time w2

is a constant value at 5. When t = 80, b0
11 jumps to 0.125 abruptly and when t = 150 it jumps back

to 9.998 again. Utilizing the prior information, the region where jumping parameter b0
11 changes is

evaluated at [0,10] and multiple fixed models are set up accordingly. Note that the real system model

is not among fixed system models. Other parameters are estimated using the conventional adaptive

control algorithm. In this paper, a hierarchical MMAC with three levels and 10 models in each level is

proposed, which has 30 models totally and can represent 1000 models. In Fig. 1, the system response

of an MMAC with 30 fixed models is shown, which has the same models as those in HMMAC in Fig. 3.

In Fig. 2, the simulation result of an MMAC with 1000 fixed models is shown, which cover the same

models as those in Fig. 3. The results show that when more fixed models are adopted, the transient

response in Fig. 2 is much better than that in Fig. 1. For the HMMAC in Fig. 3, when the same

number of the fixed models is used, the system transient response and decoupling result are improved

(see Fig. 1). With same transient response and decoupling result the number of the fixed models in

HMMAC is much less than that in MMAC (see Fig. 2).

(a) The output y1(t) of the system (b) The output y2(t) of the system
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Fig. 1 Simulation of MMAC using 30 fixed models with 2 adaptive models

(a) The output y1(t) of the system (b) The output y2(t) of the system

Fig. 2 Simulation of MMAC using 1000 fixed models with 2 adaptive models

(a) The output y1(t) of the system (b) The output y2(t) of the system

Fig. 3 Simulation of MMAC using 30 fixed models with 2 adaptive models

6 Conclusion

In this paper, a hierarchical multiple models direct adaptive decoupling controller is designed.

In each level, the best model is chosen according to the switching index. In the next level, multiple

fixed models are set up to cover the range where the parameter jumps dynamically. When compared

with the conventional HMMAC, it not only reduces the number of the fixed models greatly, but also

improves the transient response.
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