
Vol. 31, No. 2 ACTA AUTOMATICA SINICA March, 2005

Suboptimal Strategies of Linear Quadratic Closed-loop Differential

Games: An BMI Approach1)

NIAN Xiao-Hong1,2

1(Center for Systems and Control, Department of Mechanics and Engineering Science,

Peking University, Beijing 100871)
2(School of Information Science and Engineering, Central South University, Changsha 410075)

(E-mail: xhnian@csu.edu.cn)

Abstract The suboptimal control program via memoryless state feedback strategies for LQ differ-

ential games with multiple players is studied in this paper. Sufficient conditions for the existence of

the suboptimal strategies for LQ differential games are presented. It is shown that the suboptimal

strategies of LQ differential games are associated with a coupled algebraic Riccati inequality. Fur-

thermore, the problem of designing suboptimal strategies is considered. A non-convex optimization

problem with BMI constrains is formulated to design the suboptimal strategies which minimizes

the performance indices of the closed-loop LQ differential games and can be solved by using LMI

Toolbox of MATLAB. An example is given to illustrate the proposed results.
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1 Introduction

Linear quadratic differential games have many applications in the economy, military and intelligent

robots. The concept of differential games was first introduced by Issac within the framework of two-

person zero-sum games[1]. The non-zero games were introduced by Starr and Ho[2,3]. In the last decades,

the nonzero-sum closed-loop games were studied by many researchers[4∼10] . In [5], the existence of

linear Nash strategies for the LQ games was obtained by using Brower′s fixed-point theorem. The

global existence of solutions of the related couple of Riccati equations was investigated in [8]. Recently,

the asymptotic behavior of state feedback Nash equilibrium over infinite time period was discussed

by Ween et al.[9]. The feedback equilibrium in the scalar infinite horizon LQ game was studied by

Engwereda[10]. It is well known that the Nash equilibrium solution of LQ differential game over infinite

time period can be expressed in terms of the solution of a set of algebraic Riccati equations (ARE).

However, there is no general method to develop the solution of coupled algebraic Riccati equations, and

the numerical determination of the solution of the nonlinear ARE may be difficult especially for high

dimensional systems. Therefore, the problem of studying calculation methods to design suboptimal

strategies of LQ differential games by using optimization tools such as Matlab Toolbox is an attractive

subject in the game theory.

In this paper, we study the problem of designing suboptimal strategies LQ differential games with

multiple players. The main objects of this paper are to obtain the existence conditions for designing

suboptimal strategies and give an optimization algorithm for designing suboptimal strategies of LQ

differential games based on the BMI approach. First, the problem of suboptimal strategies is formulated

in Section 2. Then, sufficient conditions for the existence of state feedback suboptimal strategies

are derived in Section 3. Furthermore, the problem of designing feedback suboptimal strategies is

considered, optimization methods for calculation solution of a set of algebraic Riccati inequalities

associated with suboptimal strategies of LQ games are proposed in Section 4. In Section 5, a numerical

example is given to illustrate the main results.

2 Problem formulation
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Consider a class of linear quadratic (LQ) differential games with multiple players described by

the following state-space equation:

ẋ(t) = Ax(t) +
N

∑

i=1

Biui(t), x(0) = x0 (1)

where x(t) is the state vector, ui(t) for i = 1, 2, . . . , N are the control input vectors, A, Bi for i =

1, 2, . . . , N are known constant real matrices.

Associated with system (1) are the performance indices

Ji(u1, u2, . . . , uN ) =

∫ ∞

0

[xT
Qix +

N
∑

j=1

u
T
i Rijui]dt, i = 1, 2, . . . , N (2)

where Qi for i = 1, 2, . . . , N and Rij for i, j = 1, 2, . . . , N are given positive-definite symmetric matrices.

In the game, all the players aim to select state feedback control laws

ui(t) = Kix(t), i = 1, 2, . . . , N (3)

and minimize their performance indices function Ji(u1, u2, . . . , uN ) such that the resulting closed-loop

system

ẋ(t) = [A +
N

∑

i=1

BiKi]x(t) (4)

is asymptotically stable.

Definition 1. If there exist strategies u
∗
i (t) for i = 1, 2, . . . , N such that for any strategies ui(t)

for i = 1, 2, . . . , N of LQ differential game (1), the closed-loop values of the performance indices (2)

satisfy

Ji(u
∗
1, u

∗
2, . . . , u

∗
N ) 6 Ji(u

∗
1, . . . , u

∗
i−1, ui, u

∗
i+1, . . . , u

∗
N ), i = 1, 2, . . . , N (5)

then u
∗
i (t) for i = 1, 2, . . . , N are said to be optimal strategies of LQ differential game (1).

Definition 1 shows that the optimal strategies are just the Nash equilibrium of LQ differential game

(1). The following well known result for the existence of the Nash equilibrium point was introduced by

Starr and Ho (1965).

Proposition 1. If there exist optimal strategies of LQ differential game (1), the optimal strategies

are given by

u
∗
i (t) = −R

−1
ii B

T
i Pix(t), i = 1, 2, . . . , N (6)

and the symmetric matrices Pi for i = 1, 2, . . . , N satisfy the following algebraic Riccati equations

Qi + A
T
Pi + PiA − PiBiR

−1
ii B

T
i Pi +

N
∑

j=1,j 6=i

PjBjR
−1
jj RijR

−1
jj B

T
j Pj−

N
∑

j=1,j 6=i

[PjBjR
−1
jj B

T
j Pi + PiBjR

−1
jj B

T
j Pj ] = 0, i = 1, 2, . . . , N (7)

Remark 1. Although Proposition 1 has given the solutions of optimal strategies of LQ differential

game (1) theoretically, the procedure of solving ARE (7) is very difficult since these equations are

strongly coupled. There is no general method to solve ARE (7).

Definition 2. The strategies ui(t) for i = 1, 2, . . . , N are said to be the suboptimal strategies

of LQ differential game (1) if there exists positive scalar δ, such that the closed-loop values of the

performance indices (2) satisfy the following inequalities

Ji(u1, u2, . . . , uN ) 6 Ji(u
∗
1, u

∗
2, . . . , u

∗
N ) + δ, i = 1, 2, . . . , N

The main objective of this paper is to obtain sufficient conditions for the existence of the subop-

timal strategies and to develop a procedure of designing a set of stationary state feedback suboptimal
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strategies for LQ differential game (1) with multiple players. Furthermore, an algorithm method via

bilinear matrix inequalities (BMI) is given to solve the related ARE and calculate the suboptimal

strategies.

3 Suboptimal strategies of LQ differential games

At first, let us present some sufficient conditions for the existence of the state suboptimal strategies

of LQ differential game (1).

Theorem 1. If there exist symmetric positive definite matrices Pi and matrices Ki for i =

1, 2, . . . , N such that the following matrix inequalities

Qi + A
T
Pi + PiA +

N
∑

j=1

K
T
j RijKj +

N
∑

j=1

[KT
j B

T
j Pi + PiBjKj ] 6 0, i = 1, 2, . . . , N (8)

hold, the suboptimal strategies of LQ differential game (1) are given by (3) and the corresponding

values of performance indices (2) satisfy the upper bound

Ji(u1, u2, . . . , uN) 6 x
T
0 Pix0, i = 1, 2, . . . , N (9)

Proof. Consider closed-loop system (4), and define Lyapunov functions

Vi(x(t)) = x
T(t)Pix(t), i = 1, 2, . . . , N

The time derivative of Vi(x) along any trajectory of the closed-loop system (4) is given by

V̇i(x(t)) =x
T(t)[(A +

N
∑

j=1

BiKj)
T
Pi + Pi(A +

N
∑

j=1

BiKj)]x(t) = x
T(t)[Qi + A

T
Pi+

PiA +
N

∑

j=1

K
T
j RijKj +

N
∑

j=1

(KT
j B

T
j Pi + PiBjKj)]x(t) − x

T(t)[Qi +
N

∑

j=1

K
T
j RijKj ]x(t)

Inequalities (8) imply

V̇i(x(t)) 6 −x
T(t)[Qi +

N
∑

j=1

K
T
j RijKj ]x(t) (10)

By integrating both sides of the inequality (10) from 0 to T and using the initial condition x(0) = x0,

one obtains

−

∫ T

0

x
T(s)[Qi +

N
∑

j=1

K
T
j RijKj ]x(s)ds > x

T(T )Pix(T ) − x
T(0)Pix(0)

Since Pi for i = 1, 2, · · · , N are positive definite matrices, the closed-loop system (4) is asymptotically

stable. Thus

lim
T→∞

x
T(T )Pix(T ) = 0, i = 1, 2, . . . , N

Hence, we get
∫ ∞

0

x
T(s)[Qi +

N
∑

j=1

K
T
j RijKj ]x(s)ds 6 x

T(0)Pix(0)

This completes the proof of Theorem 1.

By substituting Ki = −R−1
ii BT

i Pi for i = 1, 2, · · · , N into (8), we obtain the following main results.

Theorem 2. If there exist symmetric positive definite matrices Pi for i = 1, 2, . . . , N such that

the following algebraic Riccati inequalities (ARI)

A
T
Pi + PiA + Qi − PiBiR

−1
ii B

T
i Pi +

N
∑

j=1,j 6=i

PjBjR
−1
jj RijR

−1
jj B

T
j Pj−
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N
∑

i=1,j 6=i

[PjBjR
−1
jj B

T
j Pi + PiBjR

−1
jj B

T
j Pj ] 6 0, i = 1, 2, . . . , N (11)

hold, the suboptimal strategies of LQ differential game (1) are given by

ui(t) = −R
−1
ii B

T
i Pix(t), i = 1, 2, . . . , N (12)

and performance indices (2) satisfy the upper bound (9).

Remark 3. Inequalities (11) are coupled algebraic Riccati inequalities and play a key role in

theory of LQ differential games. By Theorem 2, the feasible solution Pi for i = 1, 2, . . . N of (11)

determines a suboptimal strategies of LQ game (1). In fact, the local suboptimal strategies can be

obtained from the solution of inequalities of (11).

Due to the negative sign in the −PiBiR
−1
ii BT

i Pi term, (11) cannot be simplified to LMIs. To

accommodate the −PiBiR
−1
ii BT

i Pi terms, we introduce communicating variables Xi for i = 1, 2, · · · , N.

Because (Xi − Pi)BiR
−1
ii BT

i (Xi − Pi) > 0 for any symmetric matrices Xi and Pi of the same

dimension, we obtain

XiBiR
−1
ii B

T
i Pi + PiBiR

−1
ii B

T
i Xi − XiBiR

−1
ii B

T
i Xi 6 PiBiR

−1
ii B

T
i Pi (13)

where equalities hold when Xi = Pi for i = 1, 2, · · · , N. By combining (13) with ARI (11), we obtain

A
T
Pi + PiA + Qi − XiBiR

−1
ii B

T
i Pi − PiBiR

−1
ii B

T
i Xi + XiBiR

−1
ii B

T
i Xi+

N
∑

j=1,j 6=i

PjBjR
−1
jj RijR

−1
jj B

T
j Pj −

N
∑

i=1,j 6=i

[PjBjR
−1
jj B

T
j Pi + PiBjR

−1
jj B

T
j Pj ] 6 0, i = 1, 2, . . . , N

(14)

Thus, a sufficient condition for the existence of suboptimal strategies is given as follows.

Theorem 3. If there exist symmetric definite matrices Pi and Xi for i=1,2,. . . ,N such that the

following BMIs

Γi
4
=



























Σi P1B1 . . . Pi−1Bi−1 XiBi Pi+1Bi+1 . . . PNBN

BT
1 P1 −Si1 . . . O O O . . . O

. . . . . . . . . . . . . . . . . . . . . . . .

BT
i−1Pi−1 O . . . −Si,i−1 O O . . . O

BT
i Xi O . . . O −Sii O . . . O

BT
i+1Pi+1 O . . . O O −Si,i+1 . . . O

. . . . . . . . . . . . . . . . . . . . . . . .

BT
NPN O . . . O O O . . . −SiN



























(15)

where

Σi = A
T
Pi + PiA + Qi−XiBiR

−1
ii B

T
i Pi − PiBiR

−1
ii B

T
i Xi −

N
∑

j=1,j 6=i

[PjBjR
−1
jj B

T
j Pi + PiBjR

−1
jj B

T
j Pj ]

Sij =

{

RjjR
−1
ij Rjj , i 6= j

Rii, i = j
, i, j = 1, 2, · · · , N

hold, the suboptimal strategies are given by (12) and the performance indices satisfy the upper bound

(9).

Proof. By using the standard Schur complements, the strict inequalities (14) are equivalent to

matrix inequalities (15). From Theorem 2 we can deduce this theorem. �

4 The optimization algorithm of ARI via BMI

Now, let us consider the problem of designing the suboptimal feedback strategies of LQ differential

game (1).
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According to the Theorem 3, the feasible solution of ARI (11) can be obtained by solving the

following optimization problem

min
Pi,Ki, i=1,2,···,N

α subject to (15) (16)

where α = max16i6N{αi | Γi < −αiI}. This optimization problem is a standard BMI constraints

optimization problem. Since matrix inequalities (15) are BMIs constraints, there are no direct meth-

ods to calculate the solution of problem (16). However, for any 1 6 i 6 N , if we fixed variables

P1, · · · , Pi−1, Xi, Pi+1, · · · , PN , BMIs (15) can be formulated as LMIs in variables X1, · · · , Xi−1, Pi, Xi+1,

· · · , XN , and if we fixed X1, · · · , Xi−1, Pi, Xi+1, · · · , XN , BMIs (15) can be formulated as LMIs in

P1, · · · , Pi−1, Xi, Pi+1, · · · , PN . Thus, an obvious optimization approach for optimization problem (16)

is to solve the following problems for i = 1, 2, · · · , N

min
P1,···,Pi−1,Xi,Pi+1,···,PN

α subject to (15) (17)

iteratively. Based on this idea, a local optimization algorithm, so called alternating minimization

algorithm[11] , for designing the suboptimal strategies is presented as follows.

Algorithm 1.

Initialize: k = 0, (X1, P2, · · · , PN ) = (X
(0)
1 , · · · , P

(0)
2 , · · · , P

(0)
N ).

Repeat. set k = k + 1 and i = 1

Do while i 6 N

Solve optimization problem (17) with

(P1, · · · , Pi−1, Xi, Pi+1, · · · , PN ) = (P
(k)
1 , · · · , P

(k)
i−1, X

(k−1)
i , P

(k−1)
i+1 , · · · , P

(k−1)
N ),

to obtain X1, · · · , Xi−1, Pi, Xi+1, · · · , XN ; set

(X
(k)
1 , · · · , X

(k)
i−1, P

(k)
i , X

(k)
i+1, · · · , X

(k)
N ) = (X1, · · · , Xi−1, Pi, Xi+1, · · · , XN ).

Set i = i + 1.

Enddo

Until. For i = 1, 2, · · · , N, ‖P
(k)
i − P

(k−1)
i ‖ < ε, ‖K

(k)
i − K

(k−1)
i ‖ < ε (a prescribed tolerance),

and (11) hold with Pi = P
(k)
i , Ki = K

(k)
i , i = 1, 2, · · · , N

Remark 4. Using Algorithm 1 and MATLAB Toolbox[12∼13] , we can obtain a feasible solution of

ARI (11). Since the minimization in Algorithm 1 is a local minimization, so the calculation cost depends

largely on the initial point (X
(0)
1 , · · · , P

(0)
2 , · · · , P

(0)
N ). If we select initial point (X

(0)
1 , · · · , P

(0)
2 , · · · , P

(0)
N )

properly, the calculation cost can be decreased and more accurate solution can be obtained.

In the rest of this section, we present an method to calculate and choose the initial point. In

terms of the standard Schur complements, the strict inequalities (8) are equivalent to


















Πi KT
1 KT

2 . . . KT
N I

K1 −R−1
i1 O . . . O O

K2 O −R−1
i2 . . . O O

. . . . . . . . . . . . . . . . . .

KN O O . . . −R−1
iN O

I O O . . . O −Q−1
i



















< 0, i = 1, 2, · · · , N (18)

where Πi = ATPi + PiA +
∑N

i=1[K
T
i BT

i Pi + PiBiKi], i = 1, 2, · · · , N.

Pre- and post-multiplying both sides of (18) by (N + 2) × (N + 2) block diagonal matrices

Diag(Pi, I, · · · , I) and denoting Xi = P−1
i , Wij = KjXi for i, j = 1, 2, · · · , N , one can yield the

following linear matrix inequalities:



















Σi W T
i1 W T

i2 . . . W T
iN Xi

Wi1 −R−1
i1 O . . . O O

Wi2 O −R−1
i2 . . . O O

. . . . . . . . . . . . . . . . . .

WiN O O · · · −R−1
iN O

Xi O O . . . O −Q−1
i



















< 0, i = 1, 2, · · · , N (19)
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where Σi = XiA
T + AXi +

∑N

j=1[W
T
ij BT

i + BiWij ], i = 1, 2, . . . , N.

In general, LMIs (19) are called relaxations of BMIs (18). Since inequalities (19) for i = 1, 2, . . . , N

are linear matrix inequalities (LMIs) in Xi for i = 1, 2, . . . , N and Wij for i, j = 1, 2, . . . , N , we can use

MATLAB Toolbox to solve LMIs (19) and obtain feasible solutions Xi, Wij , i, j = 1, 2, . . . , N . problem

(19). If problem (19) has feasible solutions Xi, Wij , i, j = 1, 2, . . . , N , the initial point is given by

(X
(0)
1 , P

(0)
2 , · · · , P

(0)
N ) where X

(0)
1 = X1, P

(0)
i = X−1

i for i = 2, 3, · · · , N .

5 Numerical Example

Consider triple players LQ differential game (1) and performance indices (2) with the following

data:

A =





1 2 0

1 0 0

0 1 −1



 , B1 =





1

1

0



 , B2 =





0.5

1

0



 , B3 =





1

0.5

0



 , x0 =





0.5

0.5

0.5



 , Q1 =





1 0 0

0 1 0

0 0 1





Q1 = Q2 = Q3, R11 = R22 = 2, R12 = R13 = R31 = R32 = 0.5, R21 = R23 = R33 = 1.

Solving LMIs (19) and problem (17) by matlab Toolbox, we obtain feasible solutions of ARI (11)

as:

P1 =





2.6200 1.0827 −0.6509

1.0827 1.5957 −0.4450

−0.6509 −0.4450 1.1509



 , P2 =





2.7354 0.9833 −0.3043

0.9833 1.5936 −0.1153

−0.3043 −0.1153 0.9889





P3 =





2.0080 0.4685 −0.7343

0.4685 1.4790 −0.5469

−0.7343 −0.5469 1.3746





The control gains as: K1 = [−1.6886 − 1.2279 0.2603], K2 = [−1.0233 − 0.9850 − 0.3607], K3 =

[−1.5079 − 0.6612 − 0.3669] and the guaranteed cost as: J1(u1, u2, u3) = 1.3350, J2(u1, u2, u3) =

1.6113, J3(u1, u2, u3) = 0.8091. The following figures show the time behavior of variables and control

inputs in this example.

Fig. 1 Time behavior for state variables Fig. 2 Time behavior for control ioputs

I would like to thank Professor Huang L. for bringing this topic to my attention, and I am also

grateful to two anonymous referees for their valuable comments and helpful suggestion to improve this

paper.
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