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Abstract A class of map in which chaotic synchronization can occur is defined. The transverse

Lyapunov exponents are used to determine the stability of synchronized trajectories. Some complex

phenomena closely related to chaotic synchronization, namely riddled basin, riddling bifurcation and

blowout bifurcation are theoretically analyzed. Riddling bifurcation and blowout bifurcation may

change the synchronization stability of the system. And two types of riddled basins, i.e., global

riddled basin and local riddled basin, may come into being after riddling bifurcation. An advertising

competing model based on Vidale-Wolfe model is proposed and analyzed by the above theories at

the end of the paper.
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1 Introduction

Synchronization of chaotic system was first introduced by Afraimovich et al[1], Fujisaka and

Yamada[2]. The chaotic synchronization was first applied to secure communication in 1991. In the

subsequent years the phenomenon was observed in many physical systems, such as circuit systems[3],

electric power systems and laser systems[4]. At the same time chaotic synchronization has been applied

to control fields[5,6], biomedicine engineering including brain and heart systems[7], parameter estimation

from time series[8], and the stabilization of unstable periodic orbits in chaotic attractors[9]. The chaotic

synchronization also can be found in economic systems. [10, 11] showed such examples of a competitive

model for market attraction. Hence, it is necessary to study the stability of chaotic synchronization

and some phenomenon closely related to chaotic synchronization, namely riddled basin[12∼15], riddling

bifurcation and blowout bifurcation[16,17] . Riddling bifurcation and blowout bifurcation can change the

synchronization stability of the system.

This paper presents a class of map in which chaotic synchronization can occur. We use the

transverse Lyapunov exponent to determine the stability of synchronization. Then we analyze the

changes of such stability across the riddling and blowout bifurcations and define the riddled basins and

their classification. Finally, an advertising competing model based on Vidale-Wolfe (V-W) model is

proposed and analyzed by the above theories at the end of the paper.

2 A class of map of chaotic synchronization

First, we define a class of map that can attain a state of chaotic synchronization under some

parameters′ ranges

T : r

{

x(t + 1) = F (x(t),y)

y(t + 1) = F (y(t),x(t))
(1)

where x, y ∈ Rn, F : R2n → Rn. The symmetric property of system (1) implies that the set

4 = {(x(t), y(t))|x(t) = y(t)} is an invariant subspace for map (1), i.e., F (4) ⊆ 4. The trajectories

of x(t) and y(t) are said to be in synchronization if |x(t) − y(t)| → 0 as t → ∞. In this case map

(1)′s trajectories are embedded into the invariant subspace and are governed by the n-dimensional map

1) Supported by National Natural Science Foundation of P. R. China (60084003, 70171056)
Received July 3, 2003; in revised form May 22, 2004

Copyright c© 2005 by Editorial Office of Acta Automatica Sinica. All rights reserved.



210 ACTA AUTOMATICA SINICA Vol. 31

F (·) = T |4 : 4 → 4. And the chaotic synchronization occurs as trajectories of F (·) follow the chaotic

dynamics.

3 Transverse Lyapunov exponents

The synchronization stability usually can be determined by the transverse Lyapunov exponent[12∼14]

(abbreviated as TLE) L⊥. If chaos occurs in the invariant subspace, a spectrum of TLEs Lmin
⊥ , . . . , Lnat

⊥ ,

. . . , Lmax
⊥ can be defined, which measure the transverse stability of deferent periodic orbits embedded

in the chaotic attractor. Lnat
⊥ is said to be the natural TLE expressing the local transversely stable

weight of average trajectories in the chaotic set.

For computing the transverse Lyapunov exponent, we need to consider the Jacobian matrix of

system (1) in the invariant set

DF |4 =

[

F ′
1(x, x) F ′

2(x, x)

F ′
2(x, x) F ′

1(x, x)

]

(2)

where F ′
1(x, x) denotes the first order partial derivative matrix of F (·) with respect to the first vector

and is an n-dimensional matrix. And F ′
2(x, x) denotes the first order partial derivative matrix of F (·)

with respect to the second vector. We can obtain 2n eigenvalues and eigenvectors from the Jacobain

matrix. The transverse eigenvalues λ⊥i correspond to the eigenvectors in which the ith element and the

(i + n)th one have the same absolute value but have the opposite signs, and the eigenvalues λ‖i along

invariant subspace correspond to the eigenvectors which have the same value for the ith and (i + n)th

elements (i = 1, 2, . . . , n). Particular values depend upon the special function. Hence, we define the

transverse Lyapunov exponent as

L⊥i = lim
n→∞

1

n

n
∑

t=0

ln|λ⊥i(x(t))| (3)

The number of transverse Lyapunov exponents is n, equaling the dimensions of transverse eigen-

values. Each TLE can determine the synchronization stability between an element of vector x(t) and

the coupled one of y(t). If there exists one exponent larger then zero, a pair coupled elements of vectors

x(t) and y(t) will lose synchronization stability. This case can be called incomplete synchronization.

Alternatively, we will talk about the complete synchronization if all exponents are less than zero. This

paper mainly focuses on the complete synchronization, so only the maximum eigenvalue is used.

Without loss of generality we consider the following version of system (1)

T :

{

x(t + 1) = f(x(t), y(t))

y(t + 1) = f(y(t), x(t))
(4)

And the following transverse Lyapunov exponent can be obtained, according to the above analysis

L⊥ = lim
n→∞

1

n

n
∑

t=0

ln|f ′
1(x(t), x(t) − f ′

2(x(t), x(t))| (5)

4 Riddled basin of attraction

If chaos occurs in the invariant set, Lnat
⊥ can be calculated by substituting an aperiodic point

(∈ As) into (3). When all the periods embedded in chaotic attractor are transversely stable, i.e.,

Lmax
⊥ < 0, the chaotic attractor in the invariant set is asymptotically stable in the common Lyapunov

sense. Once an unstable periodic orbit nested in chaotic attractor (periodic saddle) loses its transverse

stability but the chaotic attractor still attracts its neighborhood points in the transverse direction,

i.e., Lmax
⊥ > 0 and Lnat

⊥ < 0, the chaotic attractor is weakly stable in the Milor sense[14]. Riddling

bifurcation occurs where Lmax
⊥ changes its signs from negative to positive, and a riddled basin of the

chaotic attractor comes into being.

β(As) is referred to as riddled basin of attractor As, if for any point x in attractor As and δ > 0,

there exists µ(β(As) ∩ Uδ(x))µ(β(As)
C ∩ Uδ(x)) > 0, where µ(·) denotes the Lebesgue measure and

Uδ(x) means the δ-neighborhood of x. Moreover, we have limδ→0 µ(β(A) ∩ (Uδ(A))/µ(Uδ(A)) = 1[13].

Furthermore, after riddling bifurcation, a dense set of repelling “tongues” opens from the trans-

versely unstable repeller and its preimages which may form either local or global riddled basin of
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attraction. For local riddled basin, the trajectories starting from the repelling “tongues” region leave

the attractor in a finite number of iterations but these trajectories are restricted by the nonlinear

mechanism to move within an absorbing area[18] and finally reinject into the attractor. The absorbing

area denoted by Abs is rigidly confined in the attraction basin and contains the attractor As with the

properties: 1) there exists a neighborhood Abs ⊂ Uδ such that points in uδ will enter Abs after a finite

number of iterations; 2) Abs is trapping, which means trajectories entering Abs cannot leave it any

longer, i.e., T (Abs) = Abs.

In a global riddled basin, for the weak nonlinear mechanism, the repelling trajectories can not

be restricted in the aforementioned absorbing area Abs, so the locally repelled trajectories will go to

another coexistent attractor (or infinity) ultimately. In this case, many sets of repelling points will

spread from the invariant set and the basin of attraction for the chaotic attractor is a Cantor set,

signifying riddling.

Different types of riddled basins may come into being for different maps. For the map proposed

in [12], a local riddled basin appears first, and then a global riddled basin emerges after a local-global

riddled bifurcation. We will illustrate only emergence of global basin for the model of this paper in

Section 5.

The parameter values where Lnat
⊥ changes its signs from negative to positive is referred to as

blowout bifurcation points. At such critical values chaotic attractor loses its weak stability, i.e., the

whole chaotic attractor becomes a chaotic saddle.

Summarizing above analyses, the transformation process of transverse stability can be shown

by Fig. 1. In Fig. 1, S denotes the invariant set and the broad-brush in the pane means chaotic

attractor in the invariant set. The small arrowheads near the invariant set represent repelling direction

of trajectories′ motion.

Fig. 1 The basic transformation process of transverse stability

5 An economic model

5.1 The description of model

This model is an extended competitive version of the classic V-W advertising model. The Lanche-

ster combat model is used to describe the evolution of the market share of the two rivals. The model

shows some chaotic synchronized dynamics after advertising efforts are used as linear feedback control

variable. The model is defined as

x(t + 1) = a1x(t) + k1u1(t)(1 − x(t)) − k2u2(t)x(t)

y(t + 1) = a2y(t) + k2u2(t)(1 − y(t))− k1u1(t)y(t) (6)

where t = 0, 1, . . . , T , is the discrete time period; x(t) and y(t) denote the capture fractions of the

market potential for two firms and satisfy 0 < x(t), y(t) < 1; ki is fixed positive values that measure the

advertising effectiveness of firm i; ai is the proportion of customers who will keep their purchasing habits

with firm i in the next period. Furthermore, the parameters satisfy: 0 < ki, ai < 1(i = 1, 2). Because
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a customer could buy both firms′ goods, or could buy no goods of the two firms, either x(t) + y(t) > 1

or x(t) + y(t) < 1 could have been appearing in the actual market.

u1(t) and u2(t) are the current advertising efforts invested by firms 1 and 2, respectively. We

choose an advertising efforts policy named sales-percent policy that is applied by many corporations to

actual market[19,20], i.e., take the sum of one firm sales′ proportion and its rivals′ one as the advertising

effort. Hence it is a linear function as follows.

u1(t) = η1πBx(t) + λ1pBy(t), u2(t) = η2pBy(t) + λ2pBx(t) (7)

where B denotes the population of potential customers, p is the price of goods, and the percents taken

from the firm′s own sales are denoted by η1 and η2, respectively. λ1 and λ2 are the proportions of

added advertising expenditures to the rival′s sales, which expresse the advertising will be enhanced as

the rival′s sales increase. For convenience, let

h1 = η1pB, n2 = η2pB, j1 = λ1pB, j2 = λ2pB (8)

We can obtain the following map by substituting advertising efforts into state equation as linear feedback

control variable.

x(t + 1) = a1x(t) + k1(h1x(t) + j1y(t))(1− x(t)) − k2(h2y(t) + j2x(t))x(t)

y(t + 1) = a2y(t) + k2(h2y(t) + j2x(t))(1− y(t))− k1(h1x(t) + j1y(t))y(t) (9)

5.2 Transformation of the system

Assume that two competitive firms produce the same daily expendable goods and have the same

parameters. Given that two firms can get the rival′s entire policy by way of business information, the

firm who wants to win in the competition would increase its advertising expenditure beyond the rival′s.

However, increasing expenditure boundlessly can damage firm′s profit, and finally the proportion η, λ

chosen by the two firms will coincide. Hence, we get a symmetric two-dimensional dynamic system as

the following

x(t + 1) = ax(t) + k(hx(t) + jy(t))(1 − x(t)) − k(hy(t) + jx(t))x(t)

y(t + 1) = ay(t) + k(hy(t) + jx(t))(1− y(t)) − k(hx(t) + jy(t))y(t) (10)

Let A = kh + kj, C = a + kh, D = kj to simplify the system. Restricting the system in the

invariant set 4, we can get a one-dimensional map

f(x) = −2Ax2 + (C + D)x (11)

Map (10) is a particular version of map (4), so we have

L⊥ = lim
n→∞

1

n

n
∑

t=0

ln| − 2Ax(t) + C − D| (12)

We mainly study the dynamics in the invariant set and its neighborhood, so we do the homeo-

morphous transformation as the following.

Let

z‖ = (x + y)/2, z⊥ = (y − x)/2 (13)

We have

z‖(t + 1) = −2Az2
‖(t) + (C + D)z‖(t), z⊥(t + 1) = −2Az‖(t)z⊥(t) + (C − D)z⊥(t) (14)

where z‖ and z⊥ express the dynamics along and perpendicular to the invariant set, respectively. The

invariant set z⊥ = 0 of system (14) is equivalent to the synchronized invariant set 4 of original system

(10), and two systems have the same dynamic function in invariant set. Hence this transformation

keeps the properties of system (10) in the neighborhood of invariant set unchanged.
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Furthermore, using the linear transformation

z‖ =
C + D

2A
xx, z⊥ = yy (15)

we obtain the Logistic map respect to state variable xx

xx(t + 1) = (C + D)xx(t)(1− xx(t)), yy(t + 1) = −(C + D)xx(t)yy(t) + (C − D)yy(t) (16)

Letting parameter r = C + D, C −D = r − 2D, we get the corresponding relation of these parameters:

r = a + kh + kj, D = kj.

5.3 Synchronized stability and numerical results

We only need to discuss the transformed system (16) according to the above analysis. As an

approach to determine the transverse stability we may evaluate transverse Lyapunov exponent first

L⊥ = lim
n→∞

1

n

n−1
∑

t=0

[−rxx(t) + r − 2D] (17)

From (17), we can find that L⊥ is related to parameters r, D and the trajectories of xx(t) in the invariant

set. From the properties of Logistic map, we know that system (16) will show complex dynamics in the

invariant set as r > 3[21].

Fig. 2 shows the blowout bifurcation points in parameter space of r and D. We perform 172400

scans of Lnat
⊥ for every different value of r and D, by ranging r from 3.569 to 4 with step of

0.001 and ranging D from 0 to 2 with step 0.005. Then we draw the blowout bifurcation points where

abs(Lnat
⊥ ) < 10−10 in Fig. 2.

From above numerical results, we find that the values of blowout bifurcation points are almost

two regular straight lines: D = 0 and D = (r− 1)/2, except in the stable period windows. Fig. 2 shows

the several remarkable regions of period windows in which blowout bifurcation points are not regular.

And in such period windows, the value of Lnat
⊥ alternates between negative and positive as parameter

D rises. It is worth noting that the distinction between asymptotic and weak stability disappears in

periodic windows for only one TLE exists in this case.

Fig. 2 Points in parameter plane at which bifurcation occurs

For the fixed point 1−1/r in the invariant set, according to equation (17), we can get the parameter

region of D : [0, 1], in which the fixed point is transversely stable. Similarly, we get the region of D

in which the period-2 points (1 + r −
√

r2 − 2r − 3)/2r and (1 + r +
√

r2 − 2r − 3)/2r are transversely

stable

D ∈
{

[0, (r − 1)/4 −
√

r2 − 2r − 7 or [(r − 1)/4 −
√

r2 − 2r − 7], (r − 1)/2], for r > 1 + 2
√

2

[0, (r − 1)/2], for r < 1 + 2
√

2
(18)



214 ACTA AUTOMATICA SINICA Vol. 31

It is difficult to get the analyzed solutions of other periodic points, so the only way that we can use is

numerical methods.

An interesting result is that the upper values of blowout points coincide with the upper values

(r − 1)/2 of transversely stable region for period 2, and the lower ones are the lower values 0 of

transversely stable region for fixed point. This shows that the periods 1 and 2 orbits play an important

role in dynamics of whole system.

The other finding is related to riddled basin. For system in this paper, only global riddled basin

can come into being. As D rises and is slightly larger than 1, the riddling bifurcation occurs and the

fixed point (1−1/r) loses its transverse stability (Lfix
⊥ > 0). As a result, many repelling tongues appear

in the neighborhood of fixed point and its preimages along the transverse direction. Because the map

function perpendicular to the invariant set is linear, the local properties of the invariant set yy = 0 can

be extended to the whole state space. So these local repelling sets will be perpendicularly repelled from

the neighborhood of invariant set and finally go to infinity. On the other hand, the TLE reflecting the

result of the linear approximation of map (10) around invariant set not only can determine the local

transverse stability, but also shows the global transverse stability for the attractor in invariant set.

Given the assumption of the model, we can get the following results in economy: If competition

is not intense, i.e., the competitive parameters h and j are small, two firms will converge to the same

market share whatever their initial conditions are. If the competition begins intense, the final market

share will be entirely dependent on the initial condition and market will fluctuate so sharply that it

will lose stability. The later case should be avoided in actual marketing.

6 Conclusion

This paper presents a class of map in which chaotic synchronization could emerge under parame-

ters′ some range and defines the calculating method of transverse Lyapunov exponents. A spectrum

of TLEs is defined as chaotic trajectories appear in invariant set, where the natural TLE is calculated

with the chaotic trajectories. The blowout bifurcation in which natural TLE changes signs may let the

attractor in invariant set lose weak stability and the riddling bifurcation in which the maximum TLE

changes signs may let the attractor lose asymptotic stability. Two types of riddled basin will come into

being after riddling bifurcation for maps′ different nonlinear mechanisms. An economic instance-two

dimensional competitive model of advertising is proposed. The blowout bifurcation points are numeri-

cally computed and a conclusion is obtained that only global riddled basin comes into being after

riddling bifurcation for this model.
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