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A Note on Polynomials Based Image Registration1)
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Abstract It is shown that the polynomials based image registration, which is widely used in remote
sensing field, does not have a sound mathematical basis. In fact, there seems no theoretical basis
for the polynomials based transform to outperform the affine transformation, a much simpler one,
in image registration. If the transformation functions are polynomials of order n, the corresponding
scene is shown to be in general the intersection of two curved surfaces of order n+1, in other words,
a space curve. In some special cases, the scene is approaching to a plane. To our knowledge, such
results did not appear in the literature previously.
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1 Introduction

Image registration is a fundamental task in computer vision and remote sensing[1∼4] to match two

or more images taken at different time, or from different sensors, or from different viewpoints. Image

registration is essentially to determine the correspondences of image points across images. The general

approach to image registration is usually carried out in two steps. At first, a number of prominent

points are selected and their correspondences are established manually or by some automatic means.

These corresponding points are called control points and used later to determine the transformation

functions to match the rest points in images. Over years, in order to offset the inaccuracy of the affine

transformation based matching, people, in particular, the people in remote sensing field, popularly

used polynomials as the transformation functions, a natural extension of the affine transformation,

to match image points. Hence problems come. Does the polynomial transformation provide a viable

alternative for the affine one? Or is the rationale of the polynomial transformation sound enough

in image registration? The objective of this note is to clarify these matters. Our results from a

theoretical analysis show that in general, the polynomial transformation is not a viable candidate in

image registration. In fact, even if the space points lie on a plane, the corresponding image points

cannot be related by a polynomial transformation. Besides, the polynomial transformation will not

necessarily outperform the affine transform in image registration.

The paper is organized as follows. In Section 2, some preliminaries are given. Main results will

be elaborated in Section 3. Section 4 is a study on the transformation with a planar scene. Some

concluding remarks are listed at the end of the paper.

2 Preliminaries

2.1 Notation

The camera model employed here is of the pinhole one. The following notation is used in this

paper: an image point is denoted by u = [u, v]T, and its homogeneous coordinates are denoted by

ũ = [u, v, 1]T and a 3D point is denoted by X = [Xw , Yw, Zw]T. Then the imaging process from a 3D

point X to its 2D image u can be expressed as

λũ = K[P t]

[

X

1

]

(1)

where λ is a non-zero scale factor, (R t) are the rotation matrix and translation vector from the world

system to the camera system, and K is the camera intrinsic matrix. If the camera intrinsic matrix is
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known, then

λũ0 = λK−1
ũ = [R t]

[

X

1

]

(2)

ũ is called the normalized coordinates. For the sake of clarity, image points will be assumed in the

normalized coordinates throughout this paper. Equivalently, the camera matrix K will be assumed to

be the identity matrix.

2.2 Homography from a space plane to its image

A space plane, without loss of generality, can be assumed to be Zw = 0. By denoting the ith

column of the rotation matrix R by ri, t hen from (1), we have

λũ = [r1 r2 r3 t]









Xw

Yw

0

1









= [r1 r2 t]





Xw

Yw

1





Therefore, a plane point X and its image u are related by a plane homography H :

λũ = H





Xw

Yw

1



 H = [r1 r2 t] =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 (3)

The 3×3 matrix H is only defined up to a scale factor.

3 Scene structure from polynomial transformation

3.1 Scene structure from affine transformation

Suppose {(ui vi) ↔ (u′

i v′

i) i = 1, 2, · · · , N} is a set of corresponding image points. By “ affine

transformation”, we mean that the corresponding pairs of image points satisfy an affine transformation,

such as
(

u′

i

v′

i

)

=

(

b1

b2

)

+

(

a11 a12

a21 a22

) (

ui

vi

)

i = 1, 2, · · · , N (4)

Many cases show that the affine transformation based registration brings gross errors. In Section 3.2,

it will be shown that only those space points with special structure can produce image points satisfying

an affine transformation.

3.2 Scene structure from polynomial transformation

Clearly, a natural extension of the affine transformation is a polynomial one such as























u′ =

n
∑

i=0

n−i
∑

j=0

aiju
ivj

v′ =

n
∑

i=0

n−i
∑

j=0

biju
ivj

(5)

The question is that whether such an extension can indeed alleviate the matching problem. Before

answering such a question, let us at first look at what the corresponding scene should behave if the

corresponding images do satisfy a polynomial transformation of order n. We have the following propo-

sition.

Proposition 1. The corresponding scene is the intersection of two curved surfaces of order n+1

if the transformation functions in (5) are polynomials of order n.

Proof. For the simplicity purpose, the two camera systems are additionally assumed to be only

under a translation t = [t1, t2, t3]
T, i.e., no rotation is involved. Hence the imaging process from a 3D

point X in space to its image ũ = [u, v, 1]T
′

in the first image and ũ
′ = [u′, v′, 1]T in the second image

can be expressed as

λũ = [I 0]

[

X

1

]

= X (6)

λ′

ũ
′ = [I t]

[

X

1

]

= X + t (7)
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From (6),

u =
Xw

Zw

, v =
Yw

Zw

(8)

From (7),

u′ =
Xw + t1
Zw + t3

, v′ = Yw + t2Zw + t3 (9)

Then substituting (8) and (9) into (5), we have

Xw + t1
Zw + t3

=
1

Zn
w

n
∑

i=0

n−i
∑

j=0

aijX
i
wY j

wZn−i−j
w ,

Yw + t1
Zw + t3

=
1

Zn
w

n
∑

i=0

n−i
∑

j=0

bijX
i
wY j

wZn−i−j
w

or

(Zw + t3)

( n
∑

i=0

n−i
∑

j=0

aijX
i
wY j

wZn−i−j
w

)

− Zn
w(Xw + t1) = 0

(Zw + t3)

( n
∑

i=0

n−i
∑

j=0

bijX
i
wY i

wZn−i−j
w

)

− Zn
w(Yw + t2) = 0

The above equations indicate that the corresponding surfaces are in general two complicated curved

surfaces of order (n+1), i.e., the scene is the intersection of these two curved surfaces of order (n+1),

i.e., generally a space curve.

If the order is equal to 2, i.e., n = 2, then

u′ = a1u2 + a2v
2 + 2a3uv + 2a4u + 2a5v + a6 = ũ





a1 a3 a4

a3 a2 a5

a4 a5 a6



 ũ = ũ
TAũ (10)

v′ = b1u
2 + b2v

2 + 2b3uv + 2b4u + 2b5v + b6 = ũ





b1 b3 b4

b3 b2 b5

b4 b5 b6



 ũ = ũ
TBũ (11)

Similarly as shown in the above, we have

(Zw + t3) × X
TAX − Z2

w × (Xw + t1) = 0 (12)

(Zw + t3) × X
TBX − Z2

w × (Yw + t2) = 0 (13)

(12) and (13) are two curved surfaces of order 3 in space, then the scene is the intersection of the two

curved surfaces of order 3.

Please notice that the above proof of Proposition 1 can be reversed. As shown in Fig. 1, we denote

the intersection of the two curved surfaces as P , which is usually a space curve, and denote the images

of P on the two image planes as p in the first image and p′ in the second image, which are two plane

curves, respectively. Then any point on p in the first image and its corresponding point on p′ satisfy

the polynomial transformation functions in (5). As a result, in practice, there exist only a few image

points in the two images that can satisfy the polynomial transformation.

Fig. 1 Only a few image points can satisfy the polynomial transformation
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From Proposition 1, we know that only space points lie on the intersection of some complicated

curved surfaces, i.e., a complicated space curve, the resulting images satisfy polynomial transformations.

In general, the corresponding points cannot be formulated as polynomial transformations. Such results

are hardly surprising. The rationale behind any polynomial transformations is that the image points

from two images should have a one-to-one mapping defined by a function, no matter how complicated

such a function is. As we know, polynomial functions are merely the approximations of the Taylor

expansion series of the function. However, from the epipolar geometry which has been extensively

investigated in recent years in computer vision, we know that such a one-to-one mapping does not exist

in general. Without any a priori knowledge on the scene and camera motion, what we can at best know

is the fact that the corresponding point must lie on a line (called epipolar line), i.e., the problem of

point correspondence is in essence the one of one-to-many mapping. As a result, we here claim that

the polynomials based image registration is lack of sound mathematical basis. Perhaps, in some special

cases, it works well. But any blithe generalization is doomed to failure.

4 A special case of study

Proposition 1 says that in the general case the resulting scene is the intersection of two curved

surfaces of order (n+1). In this section a special case, i.e., a planar surface, is considered. As shown in

Appendix, the images points projected from a space plane are related by a homography. In this case,

a one to one mapping does exist. More explicitly, suppose {ũ = (ui vi 1)T ↔ ũ
′

i = (u′

i v′

i 1) i =

1, 2, · · · , N} is a set of corresponding image points projected from a space plane. Then

λũ
′ = λ





u′

v′

1



 = Hũ =





h11 h12 h13

h21 h22 h23

h31 h32 h33









u

v

1



 (14)

i.e.,

u′ =
h11u + h12v + h13

h31u + h32v + h33
(15)

v′ =
h21u + h22v + h23

h31u + h32v + h33
(16)

If h31u + h32v + h33 6= 0, then (15) and (16) can be expanded at (u0, v0) into polynomials of infinitely

large order as
{

u′ =
∑

∞

i=0

∑

∞

j=0 aijx
iyj

v′ =
∑

∞

i=0

∑

∞

j=0 bijx
iyj

(17)

where x = u − u0, y = v − v0. (17) says that the image points from a space plane satisfy polynomial

transformation between a pair of two images, the order of the polynomials is infinitely large.
As shown in Fig. 2, the geometric interpre-

tation of the condition h31u + h32v + h33 6= 0 is

that the intersecting line between the space plane

and the focal plane of the second camera (i.e., the

plane going through the optical center of the sec-

ond camera and parallel to its image plane) should

lie outside the viewing cone of the first camera. In

other words, the projection of this intersecting line

should lie outside the first image. This is because

h31u + h32v + h33 = 0 is an image line in the first

image. By (14), this image line is transformed to

the line at infinity in the second image and the

line at infinity in the second image must be gen-

erated by the focal plane of the second camera. In

other word, the corresponding line in space is the

intersection line of the space plane and the focal

Fig. 2 In order for (15) (16) to be expansible the
intersection line h should be outside of the

view cone of the first camera

plane of the second camera. As shown in Fig. 2, πs is the space plane, plane πf is the focal plane of

the second camera. The space line L is the intersecting line between πs and πf . If line L does not lie
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within the viewing cone of the first camera, the resulting homography can be expanded by the Taylor

expansion.

Computer simulations. Here two sets of simulations are reported. Two space planes, with

one far away from the two cameras (the distance of the space plane to the first camera is about ten

times of the translation magnitude between the two cameras), and the other close to the two cameras

(the distance of the space plane to the first camera is about three times of the translation magnitude

between the two cameras). The reason of selecting such planes is that for the first one, its projective

effect is relatively small due to large distances to the two cameras. But for the second one, the projective

distortion is significant. The details are as follows.

1) The Space plane is far away from the two cameras. The plane is Zw = 0, i.e., the XY

plane of the world system. The setup of the first camera to the world system is: rotation axis is

r = [20 45 100]T, rotation angle π/6, and translation T 1 = [30 − 10 900]T. The translation

between the two cameras is T2 = [3 1 90]T. We calculate the homography as shown in [1], then we

expand the homography into polynomials of orders 10, 14 and 19 at point (0,0) and (10,6), respectively

by Taylor expansion, i.e., (15) and (16) are expanded into polynomials of orders 10, 14 and 19 at point

(0, 0) and (10,6), respectively. Finally, in each case, we reconstruct 81 real space points of the scene

using the method in Section 3.2. The results with the homography expanded at point (0,0) are shown

in Fig. 3, and those at point (10,6) are shown in Fig. 4.

(a) (b) (c)

Fig. 3 (a) Intersection of curved surfved surfaces of order 11, (b) Intersection of curved surfaces of order 15,

(c) Intersection of curved surfaces of order 20

(a) (b) (c)

Fig. 4 (a) Intersection of curved surfved surfaces of order 11, (b) Intersection of curved surfaces of order 15,

(c) Intersection of curved surfaces of order 20

Table 1 The average distance from the reconstructed points to the space plane is listed in

Far away space plane order 11 order 15 order 20

Expand at point (0,0) 2.2575 1.4956 1.4956

Expand at point (10,6) 2.3083 1.4986 1.4986
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2) The space plane is close to the two cameras.

The plane is under the world system. The setup of the first camera to the world system is: rotation

axis is r = [2 10 5]T, rotation angle π/6, and translation T1 = [−15 − 10 300]T. The translation

between the two cameras is T2 = [5 4 − 100]T. Once again, we calculate the homography with the

method in [1], then we expand the homography into polynomials of orders 10,14 and 19 at point (0,0)

and (10,-7) respectively. Finally, in each case, we reconstruct 81 real space points of the scene using

the method in Section 3.2. The results with the homography expanded at point (0,0) are shown in

Fig. 5 and those at point (10,-7) are shown in Fig. 6.

(a) (b) (c)

Fig. 5 (a) Intersection of curved surfved surfaces of order 11, (b) Intersection of curved surfaces of order 15,

(c) Intersection of curved surfaces of order 20

(a) (b) (c)

Fig. 6 (a) Intersection of curved surfved surfaces of order 11, (b) Intersection of curved surfaces of order 15,

(c) Intersection of curved surfaces of order 20

Table 2 The average distance from the reconstructed points to the space plane is listed

Near space plane order 11 order 15 order 20

Expand at point (0,0) 2.8190 2.8089 2.8089

Expand at point (10,-7) 171.2705 170.2601 170.2601

Remarks.

1) In some special cases, the scene is approaching to a plane, i.e., the intersection of two curved

surfaces of order n may approach to a plane. The simulations confirm this. From Fig. 2∼5, we can see

that the reconstructed scene is almost a planar one.

2) Although the homography can be expanded at u0, for different image point u, the accuracy of

its corresponding reconstructed scene point is different since |u − u0| is different.

3) From Table 1 and Table 2, if a plane is close to the two cameras, its reconstructed error

by polynomials transformation is larger than that of a faraway plane. This is consistent with the

conventionalism since the closer a plane, the more severe the projective distortion.
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4) For two planes we studied, we find that if we expand (15) and (16) into polynomials of lower

order, say, less than 10, then the reconstructed points are quite sparse and the intersection of two

curved surfaces is not approaching to a plane, as shown in Fig. 7. This shows that for planar scene,

using polynomial functions of lower order to match images is not viable.

Space plane is far away Space plane is close

Fig. 7 Intersection of curved surface of order 5 (expand at point (0, 0))

5 Conclusions

In this short note, we show that generally speaking, if the corresponding image points from two

images are governed by a polynomial transformation of order n, the corresponding space points must

lie on the intersection of two curved surfaces of order (n + 1). In some special cases, the scene is

approaching to a plane. Furthermore, we show that there seems no sound theoretical basis for the

polynomials based image registration. In fact, even if the space points lie on a plane, the corresponding

image points cannot be formulated by a polynomial transformation.
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Appendix

Relationship between two images of a space plane

Proposition. The relationship between two images of a space plane is a plane to plane homography.
Proof. From Section 2.2, we know that the map between a plane and its images is a plane to plane

homography, and then, the map between the plane and its first image and its second image can be expressed as

λũ = H1





Xw

Yw

1



 λ
′
ũ
′ = H2





Xw

Yw

1





then,
sũ

′ = H2H
−1
1 ũ = Hũ

where s is a non-zero scale factor. Therefore, the relationship between the two images of a space plane is also a
plane to plane homography. �


