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Abstract This paper describes the synthesis of robust and non-fragile H∞ state feedback con-
trollers for a class of uncertain jump linear systems with Markovian jumping parameters and state

multiplicative noises. Under the assumption of a complete access to the norm-bounds of the system
uncertainties and controller gain variations, sufficient conditions on the existence of robust stochastic

stability and γ-disturbance attenuation H∞ property are presented. A key feature of this scheme

is that the gain matrices of controller are only based on lt, the observed projection of the current
regime rt.
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1 Introduction

A great deal of attention has recently been devoted to the uncertain jump linear systems with

Markovian jumping parameters[1∼4]. In this paper, we study the robust non-fragile H∞ control problem

for a class of uncertain jump linear systems with state multiplicative noises. Two observation errors

– false alarms and detection delays of the jumping parameters are considered. Under the condition

of exactly knowing the norm bound of the system uncertainties, sufficient conditions on the existence

of robust stochastic stability and γ-disturbance attenuation H∞ property are presented. To facilitate

the solution process, the linear matrix inequality (LMI) approach will be employed in the present

development by using Schur complement.

2 Model description and preliminaries

Consider the following class of uncertain jump linear systems(
dx(t) = [A1(rt) + △A1(rt, t)]x(t)dt + B2(rt)w(t)dt + [B1(rt) + △B1(rt, t)]u(t)dt + B3(rt)x(t)dw1(t)

z(t) = [C(rt) + △C(rt, t)]x(t)

(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m1 is the control input, z(t) ∈ R
m3 is the output, w(t) ∈

R
m2 is the arbitrary exogenous disturbance signal in £2 [0 ,∞), and it is assumed that the Markov

process rt is independent of w(t), the noise w1(t) is an independent Wiener process on R and the

interpretation of this diffusion with Markovian switching coefficients is as a collection of piecewise

defined Ito stochastic differential equations. The parameter rt is continuous-time Markov process on the

probability space which takes values in the finite discrete state-space S = {1, 2, · · · , N} with generatorQ
= (πij)N×N (i, j ∈ S) given by

P{rt+∆ = j|rt = i} =

�
πij∆ + o(∆), i 6= j

1 + πii∆ + o(∆), i = j

where lim∆→0 o(∆)/∆ = 0(∆ > 0), πij is the transition rate from i to j, and

πii = −
X
j 6=i

πij , (πij > 0, j 6= i)

Considering two kinds of failure: false alarms and detection delays in the observation channel, we

introduce the discrete variable lt ∈ {1, 2, · · · , N}, which is thus of the same nature as the true regime.

More precisely, [5] has assumed that the following model describes the detection delays:
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When rt has jumped from i to j, lt follows with a delay that is an independent exponentially

distributed random variable with mean 1/π0
ij . It is written as

P
n

lt+∆ = j|ls = i, s ∈
h

t0, t
i
, rt0 = j, r

t
−

0

= i
o

=

�
π0

ij∆ + o(∆), i 6= j

1 + π0
ii∆ + o(∆), i = j

(2)

The entries of the matrix Π0 = (π0
ij)i,j=1,···,N are evaluated from observed sample paths.

False alarms are described in similar terms:

When rt in fact remains at i, occasional declaration of an lt has transitioned from i to j. An

independent exponential distribution with rate π1
ij is again assumed

P
n

lt+∆ = j|ls = i, s ∈ [ t0, t ]
o

=

�
π1

ij∆ + o(∆), i 6= j

1 + π1
ii∆ + o(∆), i = j

(3)

with a matrix Π1 = (π1
ij)i,j=1,···,N of false alarm rates.

The unknown matrices △A1(rt, t) ∈ R
n×n,△B1(rt, t) ∈ R

n×m1 , and △C(rt, t) ∈ R
m3×n represent

time-varying parameter uncertainties, and are assumed to be of the form

[△A1(rt, t), △B1(rt, t)] = H1(rt)F (rt, t) [E1(rt), E2(rt)]

△C(rt, t) = H2(rt)F (rt, t)E3(rt)

where H1(rt), H2(rt), E1(rt), E2(rt) and E3(rt) are known real constant matrices for all rt ∈ S , and

F (rt, t), for all rt ∈ S, are the uncertain time-varying matrices satisfying

FT(rt, t)F (rt, t) 6 I, ∀ rt ∈ S (4)

For sake of simplicity, we denote the current regime by an index (e.g. Ai stands for A(rt) when rt =

i ∈ S).

Although one may find the controller u(t) = K(lt)x(t), the actual controller implemented is

assumed as the one in [6]

u(t) = [I + α(rt)φ(rt, t)]K(lt)x(t)

where K(lt) is the nominal controller gain for each lt ∈ S, α(rt) > 0 is the positive constant for each

rt ∈ S, and the term α(rt)φ(rt, t)K(lt) represents controller gain variations, and φ(rt, t) is defined as

φT(rt, t)φ(rt, t) 6 I, ∀ rt ∈ S

Now, the corresponding closed loop system is given by8><>: dx(t) = [A1(rt) + △A1(rt, t)]x(t)dt + B2(rt)w(t)dt + B3(rt)x(t)dw1(t)

+ [B1(rt) + △B1(rt, t)] [I + α(rt)φ(rt, t)] K(lt)x(t)dt

z(t) = [C(rt) + △C(rt, t)] x(t)

(5)

Our controller design objective is described as

1) Given that the disturbance input is zero all the time, to establish the sufficient conditions for

the robust and non-fragile exponential stability in mean square of the closed loop system (5).

2) Under the zero initial condition, to establish the sufficient conditions for the r−disturbance

attenuation property of the closed loop system (5), that is,

J = E

(Z T

0

"
zT(t)z(t) − γ2wT(t)w(t)

#
dt

)
< 0, (w(t) 6= 0) (6)

3 Robust non-fragile control for uncertain jump linear systems

Lemma 1[7]. Given matrices Q = QT, H,E and R = RT > 0 of appropriate dimensions,

Q + HFE + ETFTHT < 0
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for all F satisfying FTF 6 R, if and only if there exits some λ > 0 such that

Q + λHHT + λ−1ETRE < 0

Lemma 2[5]. Assume that the functions f(·), and h(·) are continuous in t, x(t) for rt, lt ∈ S, and

satisfy the usual growth and smoothness hypothesis.

dx = f(x, u(t), lt, rt, t)dt + h(x, rt)dw1(t)

Let g(x(t), lt, rt, t) be a scalar function satisfying the conditions of Appendix 1 in [5]. Then the generator

of the pair (x(t), lt, rt) under the control action u(t) is the operator Ψ such that: when lt = rt = i

Ψg(x(t), i, i, t) = lim
△→0

1

△
[E {g(x(t + △), lt+△, rt+△, t + △)|x(t) = x, lt = i, rt = i, t} − g(x, i, i, t)] =

gt(x, i, i, t) + fT(x, u(t), i, i, t)gx(x, i, i, t) +

NX
j=1

πijg(x, i, j, t) +

NX
j=1

π1
ijg(x, j, i, t)+

1

2
trace[hT(x, i)gxx(x, i, i, t)h(x, i)] (7)

when lt = j 6= rt = i

Ψg(x(t), j, i, t) =gt(x, j, i, t) + fT(x, u(t), j, i, t)gx(x, j, i, t) + π0
jig(x, i, i, t) − π0

jig(x, j, i, t)+

1

2
trace[hT(x, i)gxx(x, j, i, t)h(x, i)] (8)

Theorem 1. The uncertain jump linear system (5) without disturbance achieves exponential

mean-square stability, and the controller u(t) = K(lt)x(t) is robust and non-fragiled if there exist

symmetric positive-definite matrices Pji = PT
ji > 0, controller gain matrices Kj and positive constants

λ1ji > 0, λ2ji > 0 such that the following LMIs hold for j, i ∈ S266664 Ωji + λ2jiE
T
1iE1i PjiB1i + λ2jiE

T
1iE2i KT

j PjiH1i KT
j

BT
1iPji + λ2jiE

T
2iE1i −I + λ2jiE

T
2iE2i 0 0 0

Kj 0 −I + λ1jiα
2
i I 0 0

HT
1iPji 0 0 −λ2jiI 0

Kj 0 0 0 −λ1jiI

377775 < 0, j, i ∈ S (9)

where

Ωji =

8>><>>: AT
1iPii + PiiA1i +

NX
j=1

πijPij +
NX

j=1

π1
ijPji + BT

3iPiiB3i, if j = i

AT
1iPji + PjiA1i + π0

ji(Pii − Pji) + BT
3iPjiB3i, if j 6= i

Proof. For the nominal jump linear system Σ0 without disturbance, which means ∆A1(rt, t) = 0,

∆B1(rt, t) = 0, ∆C(rt, t) = 0, φ(rt, t) = 0 and w(t) = 0 in (5), consider the following Lyapunov

function:

V (x(t), lt, rt) = x
T(t)P (lt, rt)x(t) (10)

where P (lt, rt) are positive defined and symmetrical matrices. Using the infinitesimal generator Ψ , we

have

Case 1. lt = rt = i

ΨV (x(t), i, i) = x
T(t)Miix(t) (11)

where Mii =

"
(A1i + B1iKi)

TPii + Pii(A1i + B1iKi) +
NX

j=1

πijPij +
NX

j=1

π1
ijPji + BT

3iPiiB3i

#
.

It′s easy to see that Mii < 0 is equivalent to"
AT

1iPii + PiiA1i +

NX
j=1

πijPij +

NX
j=1

π1
ijPji + BT

3iPiiB3i

#
+ PiiB1iIKi + KT

i IBT
1iPii < 0 (12)



No. 3 KANG Yu et al.: Robust and Non-fragile H∞ Control for a Class of Uncertain Jump · · · 441

By Lemma 1, a sufficient condition guaranteeing (12) is that there exists a positive number λii > 0, (i ∈

S) such that

λii

"
AT

1iPii + PiiA1i +
NX

j=1

πijPij +
NX

j=1

π1
ijPji + BT

3iPiiB3i

#
+ λ2

iiPiiB1iIBT
1iPii + KT

i IKi < 0 (13)

Replacing λiiPii with Pii, and applying the Schur complement leads to that (13) is equivalent to24 Ωii PiiB1i KT
i

BT
1iPii −I 0

Ki 0 −I

35 < 0, i ∈ S (14)

where Ωii = AT
1iPii + PiiA1i +

NX
j=1

πijPij +
NX

j=1

π1
ijPji + BT

3iPiiB3i.

Case 2. lt = j, rt = i and j 6= i

ΨV (x(t), j, i) = x
T(t)Mjix(t) (15)

where Mji =
�
(A1i + B1iKj)

TPji + Pji(A1i + B1iKj) + π0
ji(Pii − Pji) + BT

3iPjiB3i

�
, j 6= i.

Following similar lines as in the proof of case 1, we canobtain that the following LMI24 Ωji PjiB1i KT
j

BT
1iPji −I 0

Kj 0 −I

35 < 0, j, i ∈ S , and j 6= i (16)

guarantees Mji < 0, where Ωji = [AT
1iPji + PjiA1i + π0

ji(Pii − Pji) + BT
3iPjiB3i].

Hence, (14) and (16) are sufficient to guarantee the negativity of ΨV (x(t), lt, rt) for all j, i ∈ S .

By Theorem 2.3 and Theorem 7.2 in [5], the nominal jump linear system Σ0 is exponentially stable in

mean square.

Then, to the uncertain jump linear system (5) without disturbance, we only need to replace

A1i, B1i and Kj in (14) and (16) with A1i + H1iFi(t)E1i, B1i + H1iFi(t)E2i and Kj + αiφi(t)Kj for

all j, i ∈ S . By Lemma 1, a sufficient condition guaranteeing (14) and (16) is that there exist positive

constants λ1ji > 0, λ2ji > 0, (j, i ∈ S) such that24 Ωji PjiB1i KT
j

BT
1iPji −I 0

Kj 0 −I

35 + λ1ji

24 0

0

αi

3524 0

0

αi

35T

+ λ−1
1ji

24KT
j

0

0

3524KT
j

0

0

35T

+

λ−1
2ji

24PjiH1i

0

0

3524PjiH1i

0

0

35T

+ λ2ji

24ET
1i

ET
2i

0

3524ET
1i

ET
2i

0

35T

< 0 (17)

Applying the Schur complement yields that (9) is equivalent to (17) for all j, i ∈ S . This completes the

proof. �

4 Robust non-fragile H∞ control for uncertain jump linear systems

In this section, we consider robust and non-fragile H∞ disturbance attenuation for the uncertain

jump linear system (5).

Theorem 2. The uncertain jump linear system (5) is stochastically stable with γ-disturbance

attenuation property (6), and the controller u(t) = K(lt)x(t) is robust and non-fragile if there exist

symmetric positive-definite matrices Pji = PT
ji > 0, controller gain matrices Kj and positive constants
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λ1ji > 0, λ2ji > 0, λ3ji > 0, such that and the following LMIs hold for j, i ∈ S266666666664
Ωji + λ2jiE

T
1iE1i PjiB2i PjiB1i + λ2jiE

T
1iE2i KT

j

BT
2iPji −γ2I 0 0

BT
1iPji + λ2jiE

T
2iE1i 0 −I + λ2jiE

T
2iE2i 0

Kj 0 0 −I + λ1jiα
2
i I

Ci 0 0 0

H1iPji 0 0 0

Kj 0 0 0

E3i 0 0 0

CT
i PjiH1i KT

j ET
3i

0 0 0 0

0 0 0 0

0 0 0 0

−I + λ3jiH2iH
T
2i 0 0 0

0 −λ2jiI 0 0

0 0 −λ1jiI 0

0 0 0 −λ3jiI

377777777775 < 0 (18)

where Ωji =

8>><>>: AT
1iPii + PiiA1i +

NX
j=1

πijPij +

NX
j=1

π1
ijPji + BT

3iPiiB3i, if j = i

AT
1iPji + PjiA1i + π0

ji(Pii − Pji) + BT
3iPjiB3i, if j 6= i

.

Proof. Let us first look at the nominal jump linear system
P

1, which means ∆A1(rt, t) =

0, ∆B1(rt, t) = 0, ∆C(rt, t) = 0 and φ(rt, t) = 0 in (5). Again taking the Lyapunov function as (10)

and following a similar line as in the proof of Theorem 1, we have

ΨV (x(t), j, i) =

�
x(t)

w(t)

�T �
Mji PjiB2i

BT
2iPji 0

��
x(t)

w(t)

�
(19)

where

Mji =

8>><>>: (A1i + B1iKi)
TPii + Pii(A1i + B1iKi) +

NP
j=1

πijPij +

NX
j=1

π1
ijPji + BT

3iPiiB3i, if j = i

(A1i + B1iKj)
TPji + Pji(A1i + B1iKj) + π0

ji(Pii − Pji) + BT
3iPjiB3i, if j 6= i

By Dynkin′s formula, we have

E

�Z T

0

ΨV (x(s), ls, rs, s)ds

�
= E{V (x(T ), lT , rT , T )} − E{V (x(0), l0, r0, 0)}

Under the zero initial condition, we have

J 6 E

�Z T

0

h
z

T(t)z(t) − γ2
w

T(t)w(t) + ΨV (x(t), lt, rt, t)
i
dt

�
,∀ w(t) ∈ £2 [0 ∞)

Taking (19) into the above inequality, we have

J 6 E

(Z T

0

"�
x(t)

w(t)

�T �
Mji + CT

i Ci PjiB2i

BT
2iPji −γ2I

��
x(t)

w(t)

�#
dt

)
(20)

By Lemma 1 and applying the Schur complement we obtain that2664Ωji + CT
i Ci PjiB2i PjiB1i KT

j

BT
2iPji −γ2I 0 0

BT
1iPji 0 −I 0

Kj 0 0 −I

3775 < 0, j, i ∈ S (21)
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where

Ωji =

8>>>><>>>>: AT
1iPii + PiiA1i +

NX
j=1

πijPij +
NX

j=1

π1
ijPji + BT

3iPiiB3i, if j = i

AT
1iPji + PjiA1i + π0

ji(Pii − Pji) + BT
3iPjiB3i, if j 6= i

guarantees "
Mji + CT

i Ci PjiB2i

BT
2iPji −γ2I

#
< 0

Then for the uncertain system (5), replacing A1i, B1i, Ci and Kj in (21) with A1i + H1iFi(t)E1i, B1i +

H1iFi(t)E2i, Ci + H2iFi(t)E3i and Kj + αiφi(t)Kj , and using Lemma 1, we can complete the proof.�

5 Conclusion

In this paper, we study the robust non-fragile H∞ control problem for a class of uncertain jump

linear systems. Sufficient conditions on the existence of robust stochastic stability and γ-disturbance

attenuation H∞ property are presented based on coupled LMI′s. All of these results established are

dependent of the priori knowledge of the norm bounds of the system′s uncertainties. A possible direction

for future work is to obtain the robust and adaptive H∞ control laws of the unknown norm bounds.
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