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Abstract The control of underactuated mechanical systems is very complex for the loss of its
control inputs. The model of underactuated mechanical systems in a potential field is built with
Lagrangian method and its structural properties are analyzed in detail. A stable control approach is
proposed for the class of underactuated mechanical systems. This approach is applied to an unde-
ractuated double-pendulum-type overhead crane and the simulation results illustrate the correctness
of dynamics analysis and validity of the proposed control algorithm.

Key words Underactuated systems, system dynamics, stable control, pendulum, overhead crane

1 Introduction

Underactuated mechanical systems (UMSs) are a class of mechanical systems that have fewer
control inputs than generalized coordinates variables. UMS has advantage over fully-actuated systems
in energy saving, cost reducing, manufacturing and installing. The restriction of control inputs of UMS
brings a challenging control problem. Moreover, a fully-actuated system may become an UMS because
of actuator failure and so the control algorithm for UMS can be used as a kind of fault-tolerate control
algorithm.

A remarkable research effort has been devoted to the UMS dynamics and control properties. The
partial feedback linerization was put forward[1]. Three classes of control problems were analyzed[2].
Nonholonomic constraint and controllability were researched[3]. System dynamics, controllability and
stabilizability results were derived[4]. However, there are few results that are applicable to entire class
of UMSs[5]. In this paper, a class of UMSs in a potential field is considered: its dynamic model is built,
its structural properties are analyzed, and a stable control approach is designed for the entire class of
UMSs. Finally simulation is performed with an underactuated double-pendulum-type overhead crane
(DPTOC).

2 Dynamics and properties of UMSs

According to the Lagrange mechanics, i.e., Euler-Lagrange equation, the dynamics of the class of
UMSs in a potential field can be built as follows.

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ̄ (1)

where q = (q1, · · · , qn)T is the generalized coordinates vector, τ̄ = (τ1, · · · , τm, 0, · · · , 0)T = (τ ,0)T is
the control vector. When m < n, the system is said to be underactuated. M(q) ∈ Rn×n is the inertia
matrix and mij(q) is its matrix element. C(q, q̇) is the Centrifugal terms (i = j) and Coriolis terms
(i 6= j), its matrix element is

cij(q, q̇) =
nX

k=1

Γ
i
k,j(q)q̇k (2)

Γ
k
i,j(q) are called Christoffel symbols and defined as

Γ
k
i,j(q) =

1

2

�
∂mkj(q)

∂qi

+
∂mki(q)

∂qj

−
∂mij(q)

∂qk

�
(3)

G(q) contains the gravity terms
G(q) = ∂P (q)/∂q (4)

The UMSs have the following structural properties:
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Property 1. M(q) is a positive definite symmetric matrix[6].
Property 2. N(q, q̇) = Ṁ(q) − 2C(q, q̇) is a skew symmetric matrix.
Proof. Each element of the derivative of the inertia matrix is given by

ṁij(q) =
nX

k=1

∂mij(q)

∂qk

q̇k

Each element of N(q, q̇) can be calculated from (2) and (3), i.e.,

nij(q, q̇) = ṁij(q) − 2cij(q) =
nX

k=1

�
∂mkj(q)

∂qi

−
∂mik(q)

∂qj

�
q̇k

Recalling Property 1, it is straightforward to deduce that

nji(q, q̇) =

nX
k=1

�
∂mki(q)

∂qj

−
∂mjk(q)

∂qi

�
q̇k = −

nX
k=1

�
∂mkj(q)

∂qi

−
∂mik(q)

∂qj

�
q̇k = −nij(q, q̇) (5)

i.e., Ṁ(q) − 2C(q, q̇) is a skew symmetric matrix. �

Property 3. The UMSs are passive systems
Proof. The total energy function of the UMSs can be written as

E(q, q̇) =
1

2
q̇

TM(q)q̇ + P (q) (6)

where
1

2
q̇

TM(q)q̇ is the system kinetic energy, and P (q) is the system potential energy. A reference

point of the potential energy can be chosen to make P (q) > 0, and so E(q, q̇) > 0. The differential of
E(q, q̇) can be computed using (1), (4) and Properties 1-2:

Ė(q, q̇) = q̇
TM(q)q̈ +

1

2
q̇

TṀ(q)q̇ + q̇
T ∂P (q)

∂q
= q̇

T
τ̄ +

1

2
q̇

T(Ṁ(q) − 2C(q, q̇))q̇ = Θ̇
T
τ (7)

where Θ = (q1, q2, · · · , qm)T = Zq, τ = (τ1, τ2, · · · , τm)T = Zτ̄ , and Z = [Im 0]. Therefore,Z t

0

Θ̇
T
τdt = E(q(t), q̇(t)) − E(q(0), q̇(0)) > −E(q(0), q̇(0)) i.e. 〈τ |Θ̇〉t > −E(q(0), q̇(0)) (8)

Thus, UMSs are passive systems with respect to input τ and output Θ̇
[7]

. �

3 Stable control for the UMSs

It is supposed that the control objective is to control the system to stay in qd, one of the equilibrium
states, where Θd is the control objective of the actuated part. The following Lyapunov function is
defined

V (q, q̇) =
1

j
kE(E(q, q̇) − P (qd))

j +
1

2
kDΘ̇

T
Θ̇ +

1

2
kP (Θ−Θd)

T(Θ−Θd) (9)

where kE is a positive constant, P (qd) is the potential energy at the desired position, j is a constant.
In order to make V (q, q̇) > 0, j should be 1 when the desired position is the minimal potential energy
point among all the accessible states, and j should be 2 when the desired position is not the minimal
potential energy point. Both kD and kP are positive constants.

When j = 1, the differential of Lyapunov function V (q, q̇) can be calculated as

V̇ (q, q̇) = kEĖ(q, q̇) + kDΘ̇
T
Θ̈ + kP (Θ̇− Θ̇d)T(Θ−Θd) = Θ̇

T
(kEτ + KDΘ̈ + kP (Θ−Θd)) (10)

In order to ensure the system stability, we take

V̇ (q, q̇) = −kΘ̇
T
Θ̇ (11)

where k is a positive real number. Then following equation holds

kEτ + kDΘ̈ + kP (Θ−Θd) = −kΘ̇ (12)
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From (1) and (12), the control law can be obtained as follows.

τ = −(kEIm + kDZM−1(q)ZT)−1(kp(Θ−Θd) − kDZM−1(q)(C(q, q̇)q̇ + G(q)) + kΘ̇) (13)

Theorem 1. For UMSs described by (1), when the equilibrium point qd is the minimal potential
energy point in the system accessible space, controller (13) can make the closed loop system converge

to the equilibrium point qd or the stable trajectory
1

2
q̇

TM(q)q̇ + P (q) = C, where C is a positive

constant.
Proof. From (9) and (11), V (q, q̇) > 0 holds. There are two cases.
When q = qd and q̇ = 0 hold at the same time, V (q, q̇) = 0 holds. From (13), τ = 0 holds.

Therefore, the system is stabilized to the desired position.
When q 6= qd or q̇ 6= 0, V (q, q̇) is a positive definite function. From (11), V̇ (q, q̇) 6 0 holds.

Therefore, Θ̇ ∈ L2 ∩ L∞, E(q, q̇) and Θ are bounded. From (6), q, q̇ and M(q) are bounded. M(q)
is a positive definite symmetric matrix indicating that M−1(q) is bounded. From (1), q̈ is bounded,

and then V̈ (q, q̇) = −2kΘ̈
T
Θ̇ is bounded. This indicates V̇ (q, q̇) is a uniformly continuous function.

According to Barbalat′s lemma, lim
t→∞

V̇ (q, q̇) = 0 i.e., lim
t→∞

Θ = 0. It can be seen that lim
t→∞

V (q, q̇) and

lim
t→∞

(Θ − Θd) are constant. From (7) and (13), lim
t→∞

E(q, q̇) and lim
t→∞

τ are constant. If lim
t→∞

τ 6= 0

holds, then Θ will change with t → ∞. This is inconsistent with that lim
t→∞

(Θ−Θd) is constant. Thus

lim
t→∞

τ = 0 must be true. From (12), lim
t→∞

Θ = Θd holds. The stability analyse can be divided into two
cases.

When lim
t→∞

E(q, q̇) = P (qd), (6) can be written as
1

2
q̇

TM(q)q̇ + (P (q) − P (qd)) = 0 with t → ∞,

and both the two terms in the left side of the above equation are greater than or equal to zero. Therefore,
the system kinetic energy is equal to zero, and potential energy is equal to the potential energy of the
desired position, i.e., q = qd and q̇ = 0. That is to say, the system is stabilized to the desired position.

When lim
t→∞

E(q, q̇) = C 6= P (qd), the system converges to a stable trajectory
1

2
q̇

TM(q)q̇+P (q) =

C, where Θ = Θd, C is a constant greater than P (qd) and can be obtained with the above equation
and (1) when τ̄ = 0. �

When j = 2, the following control law can be obtained

τ = −(kE(E(q, q̇) − P (qd)) + kDZM−1(q)ZT)−1(kP (θ − θd) − kDZM−1(q)(C(q, q̇)q̇ + G(q)) + kΘ̇)

The system stability can be proved in the same way as Theorem 1.

4 Simulation studies�� When the mass of crane hook cannot be ignored, the overhead crane performs as a double
pendulum system[8], and the system is a typical UMS with one control input and three generalized
coordinates variables[9].
4.1 Dynamics and properties of DPTOC

Fig. 1 shows the DPTOC, in which m is the trolley mass, m1 is the hook mass, m2 is the load
mass, x is the trolley position, θ1 is the hook swing angle, θ2 is the load swing angle, l1 is the cable
length for the hook, l2 is the cable length for load, F is the trolley drive force. The friction and cable
mass are ignored.

Fig. 1 DPTOC system scheme
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The system dynamics can be described by (1), where

τ̄ = [F, 0, 0], q = [x, θ1, θ2]
T, G(q) = [0 (m1 + m2)gl1 sin θ1 m2gl2 sin θ2]

T

M(q) =

24 m + m1 + m2 (m1 + m2)l1 cos θ1 m2l2 cos θ2

(m1 + m2)l1 cos θ1 (m1 + m2)l
2
1 m2l1l2 cos(θ1 − θ2)

m2l2 cos θ2 m2l1l2 cos(θ1 − θ2) m2l
2
2

35
C(q, q̇) =

24 0 −(m1 + m2)l1θ̇1 sin θ1 −m2l2θ̇2 sin θ2

0 0 m2l1l2θ̇1 sin(θ1 − θ2)
0 −m2l1l2θ̇1 sin(θ1 − θ2) 0

35
In addition to Properties 1-3, the DPTOC system has two different natural frequencies that are

calculated through the linearization of (1) around θ1 = 0 and θ2 = 0:

M̄(q)q̈ + Kq = 0 (14)

where M̄(q) is the linearization matrix of M(q), and

K =

24 0 0 0
0 (m1 + m2)gl1 0
0 0 m2gl2

35
The natural frequencies can be obtained with nonzero eigenvalue of matrix −M̄−1(q)K[10]:

ω1,2 =

r
g

2
(α ±

p
β) (15)

where α =
m1 + m2

m1

�
1

l1
+

1

l2

�
, β =

�
m1 + m2

m1

�2 �
1

l1
+

1

l2

�2

− 4

�
m1 + m2

m1

�
1

l1l2
.

4.2 Dynamics simulation for DPTOC

In DPTOC system, the parameters that always change in different transport tasks are the payload
mass m2 and the length of cable l1. The effects of these parameters′ changes and different initial
conditions are considered. In the simulation, the basic parameters are: m = 5Kg, m1 = 2Kg, m2 = 5Kg,
l1 = 2m, l2 = 1m, and basic initial state is: θ1 = 11.465◦ , θ2 = 11.465◦, x = 0m, θ̇1 = 0◦/s, θ̇2 = 0◦/s,
x = 0m/s. The phase plane under the basic parameters and basic initial state are shown in Fig. 2 (a).
Only one parameter or one initial state is changed in the following simulations. When parameter θ2 of
the initial state is changed to −11.465◦, the phase plane is shown in Fig. 2 (b). When parameter m2

is changed to 50Kg, the phase plane is shown in Fig. 2 (c). When parameter l1 is changed to 5m, the
phase plane is shown in Fig. 2 (d). It can be seen that the dynamics are more complex than that of the
single-pendulum-type overhead crane, and are affected by the system parameters′ change. Moreover,
the dynamics are greatly affected by the initial conditions for its nonlinearity.

(a) (b)
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(c) (d)

Fig. 2 Simulation results for system dynamics

4.3 Stable control simulation

The proposed stable control algorithm is added to the DPTOC system, and the desired position
is chosen as the reference point of the potential energy. The following controller parameters are used:
kE = 1, kD = 0, kP = 10, k = 20. In the simulation, the initial position x = 0m of the basic initial
state is changed to x = −30m. The system dynamics under the basic parameters and basic initial
state is shown in Fig. 3 (a). When parameter θ2 of the initial state is changed to −11.465◦, the system
dynamics is shown in Fig. 3 (b). When system parameter m2 is changed to 50Kg, the system dynamics
is shown in Fig. 3 (c). When system parameter l1 is changed to 5m, the system dynamics is shown in
Fig.3 (d). It is clear that the proposed control law can transport the payload to the desired position
while damping swing angle, and has some robustness to the parameters changes. Moreover, the control
performance is improved with a larger load mass and is degraded with a larger cable length l1, and the
system may be stabilized to a stable trajectory.

(a) (b)

(c) (d)

Fig. 3 Simulation results for stable control

5 Conclusions

Control of UMSs is currently an active field of research due to their broad applications while the
restriction of control inputs of UMSs brings forward a challenging control problem. The dynamic model
of the UMSs is built with Lagrangian method and their several structural properties such as the positive
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definite symmetric inertia matrix and the passivity are analyzed. A stable control method is proposed
for a class of UMSs. The underactuated DPTOC system is used to validate the proposed control
algorithm. Simulation results illustrate the complex dynamics of the DPTOC and the effectiveness of
proposed control algorithm.
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